questions are on attachment!!
Printable View
questions are on attachment!!
Hello, Brooke!
Since you didn't explain where your difficulty lies,
. . I'll just give you the answers.
$\displaystyle f^{\text{-}1}(x)\;=\;\frac{4x+5}{1-3x}$Quote:
1. Find the inverse of $\displaystyle f(x)\:=\:\frac{x-5}{3x+4}$
$\displaystyle \frac{3x + 1}{x^2+4} - \frac{5}{2x-1}$Quote:
2. Find the partial fraction decomposition: $\displaystyle \frac{x^2-x-21}{(x^2+4)(2x-1)} \;= \;\frac{Ax+B}{x^2+4} + \frac{C}{2x-1}$
Quote:
3. Use synthetic division: $\displaystyle (4x^3-3x^2-5x+6) \div(x-3)$
Code:3 | 4 -3 5 6
| 12 27 96
---------------
4 9 32 102
Quotient: $\displaystyle 4x^2 + 9x + 32$ . . . Remainder: $\displaystyle 102$