Find the horizontal asymptote of the graph f(x)= 2/x-4
A: y=2 B: x=0 C: x=4 D: y=0
Find the vertical asymptote(s) if any, for f(x)= 4x-4/x2-5x-6
A: x=-1, x=6, x=4 B: x=-1, x=6 C: x=4, x=-1 D: none
Find the zeros of the function. F(x)= 4x-7/x-2
Find the horizontal asymptote of the graph f(x)= 2/x-4
A: y=2 B: x=0 C: x=4 D: y=0
Find the vertical asymptote(s) if any, for f(x)= 4x-4/x2-5x-6
A: x=-1, x=6, x=4 B: x=-1, x=6 C: x=4, x=-1 D: none
Find the zeros of the function. F(x)= 4x-7/x-2
At this level it is when the denominator is zero. Thus, if you mean $\displaystyle y=\frac{2}{x}-4$ then the answer is $\displaystyle x=0$ and if you mean $\displaystyle y=\frac{2}{x-4}$ then the answer is $\displaystyle x=4$Originally Posted by Lane
FactorOriginally Posted by Lane
$\displaystyle \frac{4(x-1)}{(x+1)(x-6)}$ that happens when $\displaystyle x=-1,6$ (remember set each factor equal to zero).
You need an "x" such as,Originally Posted by Lane
$\displaystyle \frac{4x-7}{x-2}$ a fraction is only zero when its numerator is zero thus,
$\displaystyle 4x-7=$ thus, $\displaystyle x=7/4=1.75$
Hello,Lane,Originally Posted by Lane
you'll get the horizontal asymptote if calculate the limit of f(x):
a) you mean: $\displaystyle f(x)=\frac{2}{x}-4$. Then $\displaystyle \lim_\csub{|x|\rightarrow\infty} f(x)=-4\ \Longrightarrow\ As: y = -4$
b) you mean: $\displaystyle f(x)=\frac{2}{x-4}$. then $\displaystyle \lim_\csub{|x|\rightarrow\infty} f(x)=0\ \Longrightarrow\ As: y = 0$
The possible answers doesn't include y = -4, therefore the answer is D.
Greetings
EB