Originally Posted by

**Moo** Perfect for the midpoint

For the equation of the line, i find something else :

n=2-m=2-4/(b-1)

$\displaystyle Y=\frac{4}{b-1} x + (\frac{2b-2}{b-1} - \frac{4}{b-1})$

Then, take the point at random of abscissa (b-1) (so that it will simplify for its y). This point is at equal distance of A and B.

Can you continue the exercise ? It's apparently not sufficient, but i come back in 30 minutes ;)

You could also act with direction vectors, but i don't know if you've studied it...