Results 1 to 6 of 6

Math Help - Second Part Final (4 Problems Need Help)

  1. #1
    Newbie
    Joined
    Mar 2006
    Posts
    10

    Second Part Final (4 Problems Need Help)

    Hello,

    Well I think I did fairly well on my first part of the math final. Well I've been studying for my second part of the final which is wednesday night. I have 4 problems this time I need help with, everything else is going smooth. Thanks for the help on the previous post i understand those pics were hard to make out lol. Well anyway here goes nothing...

    #28) A fourth grade class decides to enclose a rectangular garden using the side of the school as one side of the rectangle. What is the maximuum area that the class can enclose with 32 feet of fence? What should be the dimensions of the garden be in order to ield this area?

    #30) Maximizing Area: The sum of the base and the height of a parallelogram is 69cm. Find the dimensions for which the area is a maximum.

    #32) (confused me like crazy) Finding the Height of a Cliff: A water balloon is dropped from a cliff. Exactly 3 sec later, the sound of the balloon hitting the ground reaches the top of the cliff. How high is the cliff? (maybe this will help: t1 + t2 = 2) (maybe this will help too s=16t /\ 2 t is seconds and time is t1 that it takes the tablet to hit the water can be found as follows s=16(t1)/\2

    lastly #38) Norman Window. A Norman window is a rectangle with a semicircle on top. Sky blue windows is designing a Norman window that will require 24 feet of trim. What dimensions will allow the maximum amount of light to enter a house? (maybe this will help) when looking at a normal window you see a rectangle with a half circle attached to the top. the x-axis is the top of that rectangle flowing horizontally and the y-axis is the side of that rectangle flowing vertically.

    any help would be much appreciated before 3:30pm wednesday eastern time. Sorry for the late notice its been a hectic week
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    earboth's Avatar
    Joined
    Jan 2006
    From
    Germany
    Posts
    5,829
    Thanks
    123
    Quote Originally Posted by OverclockerR520
    Hello,... Well anyway here goes nothing...

    #28) A fourth grade class decides to enclose a rectangular garden using the side of the school as one side of the rectangle. What is the maximuum area that the class can enclose with 32 feet of fence? What should be the dimensions of the garden be in order to ield this area?...
    Sorry for the late notice its been a hectic week
    Hello,

    to speed up with your hectic week:
    length of rectangle : l
    width of rectangle : w
    area of rectangle : w*l

    Part of the perimeter which consists of wire = 2w +l = 32'
    That means l = 32'-2w

    You get the area with respect to w:
    A(w)=(32-2w) \cdot w=-2w^2+32w

    Let the first derivative be zero and you'll get: w = 8', thus l = 16'

    Maximal area = 128 sqrft.

    Greetings

    EB
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    earboth's Avatar
    Joined
    Jan 2006
    From
    Germany
    Posts
    5,829
    Thanks
    123
    Quote Originally Posted by OverclockerR520
    Hello,...

    #32) (confused me like crazy) Finding the Height of a Cliff: A water balloon is dropped from a cliff. Exactly 3 sec later, the sound of the balloon hitting the ground reaches the top of the cliff. How high is the cliff? (maybe this will help: t1 + t2 = 2) (maybe this will help too s=16t /\ 2 t is seconds and time is t1 that it takes the tablet to hit the water can be found as follows s=16(t1)/\2 ...
    Sorry for the late notice its been a hectic week
    Hello,

    you've got 2 movements:
    an accelerated movement when the balloon is falling down. (I don't deal with air-resistance etc.)
    a linear movement of the sound going up.

    Let c be the height of the cliff. then you get:
    c={1 \over 2} \cdot 9.81 \cdot t_1^2
    c=330 \cdot t_2. I presume it's a cold day with a temperature of 0C. Then the velocity of sound through air is 330 m/s.

    From both equations you can calculate the times which add up to exactly 3 seconds:
    {c \over 330}+\sqrt{{2c \over 9.81}}=3

    After a few transformations ( isolate the square-root, square both sides of the equation: Be aware that you've got a binomial formula on the RHS!, solve the quadratice equation for c, take only the positive value!) you'll get:

    c = 40.5986 m

    Now I've to run: Catch some s.

    Greetings

    EB
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by OverclockerR520
    Hello,



    #30) Maximizing Area: The sum of the base and the height of a parallelogram is 69cm. Find the dimensions for which the area is a maximum.
    You have b+h=69 with b,h>0 you need to maximize the function A=bh Note that h=69-b
    Thus,
    A=b(69-b)=69b-b^2
    This is a parabola, with a maximum point because the coefficeint in front of b is negative. Find its turing point,
    -\frac{69}{-2}=39.5\mbox{cm}
    Thus,
    h=39.5\mbox{cm}
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member
    earboth's Avatar
    Joined
    Jan 2006
    From
    Germany
    Posts
    5,829
    Thanks
    123
    Quote Originally Posted by ThePerfectHacker
    You have b+h=69 with b,h>0 you need to maximize the function A=bh Note that h=69-b
    Thus,
    A=b(69-b)=69b-b^2
    This is a parabola, with a maximum point because the coefficeint in front of b is negative. Find its turing point,
    -\frac{69}{-2}=39.5\mbox{cm}
    Thus,
    h=39.5\mbox{cm}
    Hello,

    have a look here:

    I believe that you made a minor mistake:

    -\frac{69}{-2}=39.5\mbox{cm}\ \ \leftarrow \mbox{are you sure?}

    Greetings

    EB
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,889
    Thanks
    326
    Awards
    1
    Quote Originally Posted by earboth
    Let c be the height of the cliff. then you get:
    c={1 \over 2} \cdot 9.81 \cdot t_1^2
    c=330 \cdot t_2. I presume it's a cold day with a temperature of 0C. Then the velocity of sound through air is 330 m/s.
    Do the same process, except replace the second line with:
    c={1 \over 2} \cdot 32 \cdot t_1^2
    and the third with:
    c=1100 \cdot t_2

    This will give you the answer in terms of feet, not meters.

    -Dan
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Showing final part of equivalence relation
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: October 6th 2010, 04:52 AM
  2. Replies: 0
    Last Post: December 16th 2009, 07:48 PM
  3. Inductive Questions, final algebra part
    Posted in the Discrete Math Forum
    Replies: 2
    Last Post: October 15th 2009, 07:02 PM
  4. Calc Final Review - Problems (Please Explain)
    Posted in the Calculus Forum
    Replies: 2
    Last Post: May 12th 2009, 02:07 AM

Search Tags


/mathhelpforum @mathhelpforum