# line meeting curve.

• May 10th 2006, 03:12 AM
line meeting curve.
hi agian!

how do you fine the coorrdinates where the line $2x+3y=1$ meets the curve $x(x-y) = 2$

kind regards

• May 10th 2006, 04:47 AM
topsquark
Quote:

hi agian!

how do you fine the coorrdinates where the line $2x+3y=1$ meets the curve $x(x-y) = 2$

kind regards

Solve $2x+3y=1$ for y, plug this y value into $x(x-y) = 2$, and solve the resulting equation for x. The use these x values in either of the original equations to get the corresponding y values. I got (6/5, -7/15) and (-1, 1).

-Dan
• May 10th 2006, 04:50 AM
CaptainBlack
Quote:

hi agian!

how do you fine the coorrdinates where the line $2x+3y=1$ meets the curve $x(x-y) = 2$

kind regards

Rewrite the first equation as

$y=\frac{1-2x}{3}$

Then substitute this for $y$ in the second equation:

$x(x-\frac{1-2x}{3}) = 2$

and solve for $x$.

Then substitute the value/s of $x$ that you have
found back into one of the equations and solve for $y$.

RonL
• May 10th 2006, 05:00 AM
thanks captainblack! :)
• May 10th 2006, 06:39 AM
re:

$
x(x-\frac{1-2x}{3}) = 2
$

:(
• May 10th 2006, 06:48 AM
CaptainBlack
Quote:

$
x(x-\frac{1-2x}{3}) = 2
$

:(

$
x(x-\frac{1-2x}{3})=\frac{x(3x-1+2x)}{3}=\frac{5x^2-x}{3} = 2
$

which simplifies to:

$
5x^2-x - 6=0
$

which is a quadratic which you can solve using the quadratic formula.

RonL