cosxcotx / 1-sinx = cscx+1
Whenever I do it I keep on getting sinx+1 instead, I'm not sure what I'm doing wrong.
$\dfrac{\cos(x)\cot(x)}{1-\sin(x)}=$
$\dfrac{\cos^2(x)}{\sin(x)(1-\sin(x))} = $
$\dfrac{1-\sin^2(x)}{\sin(x)(1-\sin(x))} = $
$\dfrac{(1-\sin(x))(1+\sin(x))}{\sin(x)(1-\sin(x))} = $
$\dfrac{1 + \sin(x)}{\sin(x)} = $
$\csc(x) + 1$