show that cos 3(theta) = 4cos^3(theta)-3cos(theta)
where do i even start?
Complex numbers also work:
$\displaystyle \cos 3\theta = \text{Re} \left( {\cos \theta + i\sin \theta} \right)^3 = \text{Re} \left( {\cos ^3 \theta + 3i\sin \theta\cos ^2 \theta - 3\sin ^2 \theta\cos \theta - i\sin ^3 \theta} \right).$
So $\displaystyle \cos 3\theta = \cos ^3 \theta - 3\cos \theta(1 - \cos ^2 \theta) = 4\cos ^3 \theta - 3\cos \theta\,\blacksquare$