I got tired of reviewing after the first couple of pages. They look fine. Why do you doubt? Go forth with confidence.
Find the vertices and locate the foci for the hyperbola whose equation is given.
(x^2)/(81) - (y^2)/(4)=1
I got:
vertices: (-9,0), (9,0)
foci: (- squareroot 85, 0), (squareroot 85,0)
(y^2)/(100) - (x^2)/(16)=1
I got:
vertices: (0,-10), (0,10)
foci: (0, -2 squareroot 29), (0, 2 squareroot 29)
Match the equation to the graph.
(x^2)/(16) - (y^2)/(9)=1
I got:
(y^2)/(16) - (x^2)/(4)=1
I got:
Find the standard form of the equation of the hyperbola satisfying the given conditions.
Foci: (-10, 0), (10, 0); vertices: (-5, 0), (5, 0)
I got: (x^2)/(25) - (y^2)/(75)=1
Foci: (0, -9), (0, 9); vertices: (0, -3), (0, 3)
I got: (y^2)/(9) - (x^2)/(72)=1
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
(x^2)/(9) - (y^2)/(4)=1
I got:
(y^2)/(9) - (x^2)/(36)=1
I got:
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
((x-4)^2)/(4) - ((y+4)^2)/(9)=1
I got: Center: (4, -4); Vertices: (2, -4) and (6, -4); Foci:4 -squareroot 13,-4) and (4 +squareroot 13, -4)
((y+3)^2)/(9) - ((x+4)^2)/(36)=1
I got: Center: (-4, -3); Vertices: (-4, -6) and (-4, 0); Foci: (-4, -3 - 3 squareroot 5) and (-4, -3 + 3 squareroot 5)