Results 1 to 2 of 2
Like Tree1Thanks
  • 1 Post By SlipEternal

Math Help - Partial fraction

  1. #1
    Member srirahulan's Avatar
    Joined
    Apr 2012
    From
    Srilanka
    Posts
    173

    Post Partial fraction

    \frac{1}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{B}{(x-b)}Find the value of the A and B,then using the correct substitution of (x,a,b)write this \frac{1}{(x^2+a^2)(x^2+b^2)}into the partial fraction.>> I do the part-1 without trouble but how can i find the correct substitution of (x,a,b) in the right position>>>>
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Nov 2010
    Posts
    1,931
    Thanks
    782

    Re: Partial fraction

    You say you can do part 1 without trouble. I will assume that is true. I get $A=\dfrac{1}{a-b}$ and $B=\dfrac{1}{b-a}$. Using the substitution $u = x^2, r = -a^2, s = -b^2$, you can rewrite:

    $\dfrac{1}{(x^2+a^2)(x^2+b^2)} = \dfrac{1}{(u-r)(u-s)}$

    Then try the partial fractions values you found:

    $\begin{align*}\dfrac{1}{(u-r)(u-s)} & = \dfrac{A}{u-r} + \dfrac{B}{u-s} \\ & = \dfrac{1}{r-s}\dfrac{1}{u-r} + \dfrac{1}{s-r}\dfrac{1}{u-s}\end{align*}$

    Substituting backwards:

    $\dfrac{1}{(x^2+a^2)(x^2+b^2)} = \dfrac{1}{(b^2-a^2)(x^2+a^2)}+\dfrac{1}{(a^2-b^2)(x^2+b^2)}$

    To show that this solution is correct, the common denominator for the RHS is $(a^2-b^2)(x^2+a^2)(x^2+b^2)$, so:

    $\begin{align*}\dfrac{1}{(b^2-a^2)(x^2+a^2)} + \dfrac{1}{(a^2-b^2)(x^2+b^2)} & = \dfrac{-(x^2+b^2)+x^2+a^2}{(a^2-b^2)(x^2+a^2)(x^2+b^2)} \\ & = \dfrac{a^2-b^2}{(a^2-b^2)(x^2+a^2)(x^2+b^2)} \\ & = \dfrac{1}{(x^2+a^2)(x^2+b^2)}\end{align*}$
    Thanks from srirahulan
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: June 4th 2012, 05:02 AM
  2. please help improper fraction into partial fraction
    Posted in the Pre-Calculus Forum
    Replies: 7
    Last Post: March 1st 2010, 09:06 AM
  3. partial fraction from improper fraction
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 24th 2010, 02:28 AM
  4. Partial fraction
    Posted in the Calculus Forum
    Replies: 6
    Last Post: July 7th 2008, 08:49 AM
  5. partial fraction
    Posted in the Advanced Algebra Forum
    Replies: 4
    Last Post: March 2nd 2008, 08:30 AM

Search Tags


/mathhelpforum @mathhelpforum