Originally Posted by

**ebaines** I interpret the OP's problem statement as proving that if a, b, and c are all odd then the line and parabola cannot touch at one point only. His phrase was: "straight line ax+by+c=0 never intersect the function f(x)=x^2 in apoint " I believe by "intersect ... in a point" he means the two functions touching at one point only, not two.

Example: if a=6, b=3 and c=3 the two lines meet at only one point, at (-1,1). This is possible because a, b. and c are not all odd. But if a= 5, b=3, c = 1 they intersect at two points, and if a=5, b=3, c=3 they don't intersect at all.