Results 1 to 6 of 6

Math Help - complex numbers problem

  1. #1
    Newbie
    Joined
    Apr 2013
    From
    heaven
    Posts
    5

    Question complex numbers problem

    the question and solution are attached but i cant understand, can somebody please guide
    Attached Thumbnails Attached Thumbnails complex numbers problem-complex.png   complex numbers problem-solution.png  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Sep 2012
    From
    Australia
    Posts
    4,011
    Thanks
    740

    Re: complex numbers problem

    Hey mathfag188.

    Are you aware of De-Moivre's theorem and how to use that to solve roots for z^n = 1?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,784
    Thanks
    1569

    Re: complex numbers problem

    \displaystyle \begin{align*} \left( \frac{z +1 }{z} \right) ^5 &= 1 \\ \left( \frac{z + 1}{z} \right) ^5 &= e^{2\pi \, i \, k} \textrm{ where } k \in \mathbf{Z} \\ \frac{z + 1}{z} &= e^{\frac{2\pi \, i \, k}{5}} \\ z + 1 &= e^{\frac{2\pi\,i\,k}{5}}\,z \\ 1 &= \left( e^{\frac{2\pi \, i \, k}{5}} - 1 \right) z \\  \frac{1}{ e^{\frac{2\pi \, i \, k}{5}} - 1} &= z \\ \frac{1}{\cos{\left( \frac{2\pi \, k}{5} \right) } + i\sin{\left( \frac{2\pi\,k}{5} \right) } -1 } &= z \\ \frac{\cos{\left( \frac{2\pi\,k}{5} \right) } - 1 - i\sin{\left( \frac{2\pi\,k}{5} \right) } }{\left[ \cos{ \left( \frac{2\pi\,k}{5} \right) } - 1 + i\sin{ \left( \frac{2\pi\,k}{5} \right) } \right] \left[ \cos{ \left( \frac{2\pi\,k}{5} \right) } - 1 - i\sin{ \left( \frac{2\pi\,k}{5} \right) } \right] } &= z \end{align*}

    \displaystyle \begin{align*} \frac{\cos{ \left( \frac{2\pi\,k}{5} \right) } - 1 - i\sin{ \left( \frac{2\pi\,k}{5} \right) }}{ \left[ \cos{ \left( \frac{2\pi\,k}{5} \right) } - 1 \right] ^2 + \sin^2{ \left( \frac{2\pi\,k}{5} \right) } } &= z \\ \frac{ \cos{ \left( \frac{2\pi\,k}{5} \right) } - 1 - i\sin{ \left( \frac{2\pi\,k}{5} \right) } }{ \cos^2{ \left( \frac{2\pi\,k}{5} \right) } - 2\cos{ \left( \frac{2\pi\,k}{5} \right) } + 1 + \sin^2{ \left( \frac{2\pi\,k}{5} \right) } } &= z \\ \frac{ \cos{ \left( \frac{2\pi\,k}{5} \right) } - 1 - i\sin{ \left( \frac{2\pi\,k}{5} \right) } }{ 2 \left[ 1 - \cos{\left( \frac{2\pi\,k}{5} \right) } \right] } &= z \\ \frac{1}{2} \left\{ -1 + \left[ \frac{\sin{\left( \frac{2\pi\,k}{5} \right)}}{1 - \cos{\left( \frac{2\pi\,k}{5} \right)}} \right] i \right \} &= z \end{align*}

    \displaystyle \begin{align*} \frac{1}{2} \left( -1 + \left\{ \frac{\sin{ \left( \frac{2\pi\,k}{5} \right) }\left[ 1 + \cos{ \left( \frac{2\pi\,k}{5} \right) } \right]}{\left[ 1 - \cos{ \left( \frac{2\pi\,k}{5} \right) } \right] \left[ 1 + \cos{ \left( \frac{2\pi\,k}{5} \right) } \right] } \right\} i \right)  &= z \\ \frac{1}{2} \left( -1 + \left\{ \frac{\sin{ \left( \frac{2\pi\,k}{5} \right) }\left[ 1 + \cos{ \left( \frac{2\pi\,k}{5} \right) } \right]}{ 1 - \cos^2{ \left( \frac{2\pi\,k}{5} \right) } } \right\} i \right)  &= z\\ \frac{1}{2} \left( -1 + \left\{ \frac{\sin{ \left( \frac{2\pi\,k}{5} \right) }\left[ 1 + \cos{ \left( \frac{2\pi\,k}{5} \right) } \right]}{ \sin^2{ \left( \frac{2\pi\,k}{5} \right) } } \right\} i \right)  &= z \\ \frac{1}{2} \left\{ -1 + \left[ \frac{ 1 + \cos{ \left( \frac{2\pi\,k}{5} \right) } }{ \sin{ \left( \frac{2\pi\,k}{5} \right) } } \right] i \right\}  &= z \end{align*}
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Apr 2013
    From
    heaven
    Posts
    5

    Re: complex numbers problem

    I dont understand what yuo did in 8th step, how you expanded it?
    other thing, did you read the solution i posted? there its done in almost 5 steps :P

    actually what i wanted to ask and i was stuck on this step
    how does the following happen?
    in solution it says "cis" where i have put cos, as i was thinking it was a typo in solution but if there is something as cis do let me know

    z=\frac{-1}{1-cos(\frac{2k\pi}{5})} = \frac{-(cos(-\frac{-k\pi}{5}))}{cos(-\frac{k\pi}{5})-cos(\frac{k\pi}{5})}
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,784
    Thanks
    1569

    Re: complex numbers problem

    Surely you know how to expand two binomials...

    You're welcome btw ><
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Newbie
    Joined
    Apr 2013
    From
    heaven
    Posts
    5

    Re: complex numbers problem

    but my problem isnt solved yet
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Complex Numbers Problem
    Posted in the Pre-Calculus Forum
    Replies: 4
    Last Post: September 16th 2009, 04:34 PM
  2. Sum of two complex numbers problem
    Posted in the Algebra Forum
    Replies: 3
    Last Post: February 25th 2009, 03:45 AM
  3. Complex numbers problem need help
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: July 28th 2008, 11:21 AM
  4. Complex Numbers Problem
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: January 17th 2008, 09:07 AM
  5. Replies: 1
    Last Post: May 24th 2007, 04:49 AM

Search Tags


/mathhelpforum @mathhelpforum