f,g: [a,b]---> R
f(x)>g(x) for every x at [a,b]
which of these statements are true? and why?
1. if f and g are continous at (a,b), and f is bounded at [a,b] - so sup f((a,b))>sup g((a,b)).
2. if f and g are continous at [a,b], so sup f([a,b])>sup g([a,b]).
thanks