How does 9^x=3 nine to the x = 3
(1/9)-x 3^2=9
(1/3)^-2=9
answer should be 9^(1/20
He4llo, Melcarthus!
I have no idea what your steps mean.
$\displaystyle \text{How does }\,9^x\,=\,3$
$\displaystyle (1/9)-x \qquad\qquad 3^2\,=\,9$ . ?
. . . . . . . . . . . . $\displaystyle \left(\tfrac{1}{3}\right)^{-2}\:=\:9$ . ?
$\displaystyle \text{Answer should be: }\:9^{\frac{1}{2}}$ . . . . no
We have: .$\displaystyle 9^x \;=\;3$
. . . . . . $\displaystyle (3^2)^x \;=\;3$
. . . . . . . $\displaystyle 3^{2x} \;=\;3^1$
Hence: . .$\displaystyle 2x \;=\;1$
. . . . . . . .$\displaystyle x \;=\;\tfrac{1}{2}$