Results 1 to 2 of 2
Like Tree1Thanks
  • 1 Post By Soroban

Math Help - Verify trigonometric identity

  1. #1
    Junior Member
    Joined
    Mar 2013
    From
    Unreals
    Posts
    44

    Verify trigonometric identity

    Hi!

    Is my solution for the problem correct?
    If so, what's the 'right' way to write it up?

    \displaystyle \cos x(\cot x + \tan x) = \csc x



    \displaystyle \cos x\left(\frac{\text{cos}x}{\text{sin}x}\, +\, \frac{\text{sin}x}{\text{cos}x}\right)

    \frac{\text{cos}^2x}{\text{sin}x}\,+\,\frac{\text{  cos}x\text{sin}x}{\text{cos}x}

    \frac{1-\text{sin}^2x}{\text{sin}x}\,+\,\text{sin}x

    \frac{{1-\text{sin}^2x\,+\,\text{sin}^2x}}{{\text{sin}x}}

    \frac1{\text{sin}x} \equiv \csc
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,738
    Thanks
    644

    Re: Verify trigonometric identity

    Hello, Unreal

    Your work is correct . . . It was a bit hard to follow.


    \text{Prove: }\:\cos x(\cot x + \tan x) \:=\: \csc x
    \text{Left side: }\:\cos x\left(\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}\right) \;\;=\;\;\cos x\cdot\frac{\overbrace{\cos^2\!x+\sin^2\!x}^{\text  {This is 1}}}{\sin x\cos x}

    . . . . . . . . . . =\;\;\cos x\cdot\frac{1}{\sin x\cos x} \;\;=\;\;\frac{1}{\sin x} \;\;=\;\; \csc x
    Thanks from Unreal
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. [SOLVED] Verify that this is an identity.
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: July 27th 2011, 09:14 AM
  2. Replies: 6
    Last Post: March 21st 2010, 08:17 PM
  3. verify an identity
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: September 1st 2009, 07:02 AM
  4. Verify the identity:
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: December 15th 2008, 10:57 AM
  5. help me verify this identity
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: July 12th 2008, 04:52 PM

Search Tags


/mathhelpforum @mathhelpforum