Results 1 to 3 of 3

Math Help - Rationalizing the numerator and complex factoring

  1. #1
    Junior Member
    Joined
    Sep 2012
    From
    canada
    Posts
    47

    Rationalizing the numerator and complex factoring

    1. [ 1 / sqroot(x)] - 1 / (x-1)
    2. [x*sqroot(x)] -8 / (x-4)

    Factor:
    a) x^6+8
    b)x^4-16
    c)r^8-1
    d) x^3-x^2-16x+16
    f)x^4-3x^3-7x^2+27x-18



    are there any easy ways to factor theses without graphing, algebraically. I only know of synthetic division.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Jul 2012
    From
    INDIA
    Posts
    834
    Thanks
    209

    Re: Rationalizing the numerator and complex factoring

    There are certain formulas which one must learn. (a^3+b^3) = (a+b)(a^2-ab+b^2); (a^3-b^3) = (a+b)(a^2+ab+b^2); a^2-b^2 = (a+b)(a-b); in case of cubic and bi-quadratic polynomials we can find linear factor by checking the sum of the coefficients, if the sum of the coefficients is zero then x = 1 is a solution and (x-1) a factor. Lastly if the sum of the coefficients of the even powers of the variable is equal to the sum of the coefficients of the odd powers of the variables then x = -1 is a solution and (x+1) is a factor.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,909
    Thanks
    773

    Re: Rationalizing the numerator and complex factoring

    Hello, skg94!

    You are expected to know basic factoring and these three formulas:

    . . Difference of squares: . a^2 - b^2 \:=\:(a-b)(a+b)

    . . Sum/difference of cubes: . a^3 \pm b^3 \:=\:(a\pm b)(a^2 \mp ab + b^2)


    [1]\;\frac{\frac{1}{\sqrt{x}} - 1}{x-1}

    \frac{\frac{1}{\sqrt{x}} - 1}{x-1} \;=\;\frac{\frac{1-\sqrt{x}}{\sqrt{x}}}{x-1} \;=\; \frac{1-\sqrt{x}}{\sqrt{x}(x-1)} \;=\;-\frac{\sqrt{x}-1}{\sqrt{x}(x-1)}


    Here's where it gets sneaky . . . x-1 is a difference of squares.

    . . x - 1 \;=\;(\sqrt{x})^2 - 1^2 \;=\;(\sqrt{x} - 1)(\sqrt{x} + 1)


    The fraction becomes: . -\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)} \;=\;-\frac{1}{\sqrt{x}(\sqrt{x}+1)}




    [2]\; \frac{x\sqrt{x} - 8}{x-4}

    We have: . \frac{\overbrace{(\sqrt{x})^3 - 2^3}^{\text{diff.cubes}}}{\underbrace{(\sqrt{x})^2 -2^2}_{\text{diff.squares}}} \;=\;\frac{(\sqrt{x}-2)(x + 2\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)} \;=\;\frac{x+2\sqrt{x}+4}{\sqrt{x}+2}




    (a)\;x^6+8 . sum of cubes

    (x^2)^3 + 2^3 \;=\;(x^2+2)(x^4 - 2x^2 + 4)




    (b)\;x^4-16 . diff. of squares

    (x^2)^2 - 4^2 \;=\;\overbrace{(x^2 - 4)}^{{\color{blue}\text{diff.squares}}}(x^2+4) \;=\;(x-2)(x+2)(x^2+4)




    (c)\;r^8-1 .diff. of squares

    (r^4)^2 - 1^2 \;=\;\overbrace{(r^4-1)}^{{\color{blue}\text{diff.squares}}}(r^4+1) \;=\;\overbrace{(r^2-1)}^{{\color{blue}\text{diff.squares}}}(r^2+1)(r^4  +1)

    . . . . . . . . . . =\;(r-1)(r+1)(r^2+1)(r^4+1)




    (d)\;x^3-x^2-16x+16

    x^3-x^2-16x + 16 \;=\;x^2(x-1) - 16(x-1)

    . . . . . . =\;(x-1)(x^2-16) \;=\;(x-1)(x-4)(x+4)




    (e)\;x^4-3x^3-7x^2+27x-18

    We have: . x^4 - 3x^3 - 7x^2 + 27x -18

    . . =\; x^4-3x^3 + \overbrace{2x^2 - 9x^2} + 27x - 18

    . . =\;x^2(x^2-3x+2) - 9(x^2-3x+2)

    . . =\;(x^2-3x+2)(x^2-9)

    . . =\'(x-1)(x-2)(x-3)(x+3)
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Factoring z^4+1 over the complex numbers
    Posted in the Pre-Calculus Forum
    Replies: 8
    Last Post: March 1st 2011, 03:09 AM
  2. Factoring Complex Polynomials
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: September 4th 2009, 01:34 AM
  3. Rationalizing the Numerator
    Posted in the Algebra Forum
    Replies: 3
    Last Post: February 1st 2009, 06:30 PM
  4. Rationalizing Numerator
    Posted in the Algebra Forum
    Replies: 3
    Last Post: September 23rd 2008, 11:24 AM
  5. Replies: 3
    Last Post: November 6th 2006, 12:02 AM

Search Tags


/mathhelpforum @mathhelpforum