• Jan 16th 2013, 06:16 AM
jrg0596
A commercial pilot must fly from Atlanta to Chicago on a bearing of 340º at a speed of 320 knots. However, the plane must battle a crosswind coming at 34 knots on a bearing of 22º.
A) Sketch a vector diagram to show the plane's heading (p), the wind speed (w), and the desired resultant (r).
B) Determine the bearing and speed the pilot should use to stay on course and on time.

If you like to help and could list the steps to how you got the answer it would be GREATLY appreciated. I have a hard time understanding this type of vector problem.
• Jan 16th 2013, 08:09 AM
HallsofIvy
Notice that gives you a triangle. One side of the triangle is 20 degrees to the left of north, another 22 degrees to the right so the angle between them is 20+ 22= 42º and those sides have lengths 340 and 34 (units of "knots" but you can treat them like lengths). That is, you have a triangle with the lengths of two sides and angle between them. You can use the cosine law, $\displaystyle c^2= a^2+ b^2- 2ab cos(C)$ (where C is the angle opposite side c), to find the "length" of the third side. You can then find the other two angles using the sine law: $\displaystyle \frac{sin(A)}{a}= \frac{sin(B)}{b}= \frac{sin(C)}{c}$.