How do write z=-5+2i in polar form?

Printable View

- Nov 11th 2012, 09:06 AMderek1008Polar form of rectangular coordinates
How do write z=-5+2i in polar form?

- Nov 11th 2012, 09:20 AMPlatoRe: Polar form of rectangular coordinates
The principle value of the argument of a complex number $\displaystyle z=a+bi$ not on any axis is found by the following.

$\displaystyle Arg(z) = \left\{ {\begin{array}{rl} {\arctan \left( {\frac{b}{a}} \right),} & {a > 0} \\ {\arctan \left( {\frac{b}{a}} \right) + \pi ,} & {a < 0\;\& \,b > 0} \\ {\arctan \left( {\frac{b}{a}} \right) - \pi ,} & {a < 0\;\& \,b < \pi } \\ \end{array} } \right.$

So $\displaystyle Arg(-5+2i)=~?$ and $\displaystyle |-5+2i|=~?$