Composite Function With Differing Bases?

**Problem:**

If $\displaystyle f(x)=\tan(x)$ and $\displaystyle g(x)=3_x 2$, then $\displaystyle \left(g \circ f \right)\left(\frac{\pi}{6}\right) = $

- 1
- $\displaystyle 3 \left(\frac{\pi}{6}\right)^2$
- $\displaystyle \tan \left(\left(\frac{\pi}{6}\right)^2\right)$
- 1.077
- None of the Above

I realize that the composite function will look something like this:

$\displaystyle \left(g \circ f \right)\left(\frac{\pi}{6}\right) = 3_{\tan \left(\frac{\pi}{6}\right)} 2$

But the subscript $\displaystyle x$ throws me off; would someone please explain how that works?

Thanks in advance.

Re: Composite Function With Differing Bases?

Oh, nevermind. It turns out that the math rendering obfuscated the meaning of $\displaystyle g(x)$. Instead, it is: $\displaystyle g(x) = 3x^2$.

The answer is 1.