center at origin, major axis on y axis, contains points (1, 2sq root 3) and (1/2, sq root 15) HELP???????????
Follow Math Help Forum on Facebook and Google+
$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ Sub in and solve.. $\displaystyle \frac{1}{a^2}+\frac{12}{b^2}=1$ $\displaystyle \frac{1/4}{a^2}+\frac{15}{b^2}=1$
Originally Posted by sluggerbroth center at origin, major axis on y axis, contains points (1, 2sq root 3) and (1/2, sq root 15) $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ i is the equation. Use the given points to find $\displaystyle a^2~\&~b^2$
Originally Posted by sluggerbroth center at origin, major axis on y axis, contains points (1, 2sq root 3) and (1/2, sq root 15) HELP??????????? $\displaystyle \frac{1^2}{a^2} + \frac{(2\sqrt{3})^2}{b^2} = 1$ $\displaystyle \frac{\left(\frac{1}{2}\right)^2}{a^2} + \frac{(\sqrt{15})^2}{b^2} = 1$ note $\displaystyle b^2 > a^2$ ... solve for $\displaystyle a^2$ and $\displaystyle b^2$
View Tag Cloud