# Simplify expression

• Jan 15th 2012, 03:19 PM
Dobby
Simplify expression
6y^-2(2y^4)^-3
• Jan 15th 2012, 04:31 PM
Quacky
Re: Simplify expression
$x^{-1}=\frac{1}{x}$

$x^{-2}=\frac{1}{x^2}$

$x^{-a}=\frac{1}{x^a}$

$(x^a)^b=x^{ab}$

• Mar 18th 2012, 11:33 PM
princeps
Re: Simplify expression
Quote:

Originally Posted by Dobby
6y^-2(2y^4)^-3

$6y^{-2} \cdot (2y^4)^{-3}=\frac{6}{y^2} \cdot \frac{1}{(2y^4)^3}=\frac{6}{y^2} \cdot \frac {1}{2^3 \cdot (y^4)^3}=$

$= \frac{6}{y^2} \cdot \frac{1}{8 \cdot y^{12}}=\frac{3}{4}\cdot \frac{1}{y^{16}}=\frac{3}{4} \cdot y^{-16}$
• Mar 19th 2012, 05:40 AM
Prove It
Re: Simplify expression
Quote:

Originally Posted by princeps
$6y^{-2} \cdot (2y^4)^{-3}=\frac{6}{y^2} \cdot \frac{1}{(2y^4)^3}=\frac{6}{y^2} \cdot \frac {1}{2^3 \cdot (y^4)^3}=$

$= \frac{6}{y^2} \cdot \frac{1}{8 \cdot y^{12}}=\frac{3}{4}\cdot \frac{1}{y^{16}}=\frac{3}{4} \cdot y^{-16}$

Correct :)
• Mar 19th 2012, 11:17 AM
bjhopper
Re: Simplify expression
[QUOTE=princeps;710102] $6y^{-2} \cdot (2y^4)^{-3}=\frac{6}{y^2} \cdot \frac{1}{(2y^4)^3}=\frac{6}{y^2} \cdot \frac {1}{2^3 \cdot (y^4)^3}=$

$= \frac{6}{y^2} \cdot \frac{1}{8 \cdot y^{12}}=\frac{3}{4}\cdot \frac{1}{y^{16}}=\frac{3}{4} \cdot y^{-16}$[/QUOTE

typo error