The following exponentiation:

3e^(1+pi i)

Needs to be written in rectangular notation:

a + ib

Where "i" is the imaginary unit.

This is what I've found out myself so far:

I know that in order to find "a" and "b" I can use the argument "v" in the exponential notation:

re^(iv)

a = cos(v)

b = sin(v)

I also know that e^(iv1+iv2) = e^(iv1) * e^(iv2)

So if I try to apply these rules I get:

3e^(1+pi i) = 3e^1 * 3e^pi

Now calculating "a" I get:

a = 3*cos(1) * 3*cos(pi) = 3*cos(1) * -3

And for "b":

b = 3*sin(1) * 3*sin(pi) = 0

But I get the feeling that 3*cos(1) is wrong.