WHAT IS LIMIT OF , [1 - cos (x)]/x such that "x approaches zero"
i think the answer is "limit doesnt exist"..
The book says its 0.
$\displaystyle \displaystyle \begin{align*} \lim_{x \to 0}\frac{1 - \cos{x}}{x} &= \lim_{x \to 0}\frac{(1 - \cos{x})(1 + \cos{x})}{x(1 + \cos{x})} \\ &= \lim_{x \to 0}\frac{1 - \cos^2{x}}{x(1 + \cos{x})} \\ &= \lim_{x \to 0}\frac{\sin^2{x}}{x(1 + \cos{x})} \\ &= \lim_{x \to 0}\frac{\sin{x}}{x}\cdot\lim_{x \to 0}\frac{\sin{x}}{1 + \cos{x}} \\ &= 1\cdot 0 \\ &= 0 \end{align*}$