Solving inequality with modulus

Solve the inequality $\displaystyle (x+2)(x-3)>|2x-1|$

$\displaystyle (x+2)(x-3)>2x-1$ or $\displaystyle (x+2)(x-3)<1-2x$

Solving the first inequality: $\displaystyle x^2-x-6>2x-1$

$\displaystyle x^2-3x-5>0$

$\displaystyle x<-1.19$ or $\displaystyle x>4.19$

Solving the second inequality: $\displaystyle x^2-x-6<1-2x$

$\displaystyle x^2+x-7<0$

$\displaystyle -3.19<x<2.19$

so, $\displaystyle x<-1.19$ or $\displaystyle x>4.19$ or $\displaystyle -3.19<x<2.19$

But the answer is $\displaystyle x<-3.19$ or $\displaystyle x>4.19$

Where did i go wrong? please advise, thanks!