Results 1 to 3 of 3

Math Help - How did they derive at the derivative?

  1. #1
    Junior Member
    Joined
    Feb 2011
    Posts
    68

    How did they derive at the derivative?

    I've just had a hard time with a problem in my maths book, and it ended up with me doing a step I think is totally unnecessary, but which I knew would give me the right answer. This is the problem:

    In a boarding school the measles are spreading. The number of students N who fall ill follows the function

    \displaystyle{N(t)}=\frac{250}{1+249e^{-t}}

    where t is the number of days after the first student has fallen ill. Calculate and interpret


    a) N'(7)
    b) N''(7).

    a) was quite easy, and after differenciating N(t) I got the derivative

    \displaystyle{N'(t)}=\frac{62250e^{-t}}{(1+249e^{-t})^{2}}

    which I then used to get that N'(7) is about 38.

    Then I came to b). This is where I got problems.
    I used the quotient rule and got this:

    \displaystyle{N''(t)}=\frac{-62250e^{-t}(1+249e^{-t})^{2}-2(62250e^{-t})(1+249e^{-t})(-249e^{-t})}{(1+249e^{-t})^{4}}

    however, this seems to be a faulty differenciation, at least when I put it in my calculator. I suspect that I've misused the chain rule in some way, but I don't know. I'm not very experienced with either the chain rule, the product rule, nor the quotient rule as I've just started counting with them.

    The whole thing ended up with me getting frustrated and eventually expanding the denomenator (I think that this is an unnecessary step, and I'm not glad that I was forced to use it) in the N'(t) expression, and after differenciating, I got this:

    {N''(t)}=\displaystyle{\frac{3859562250e^{-3t}-62250e^{-t}}{(1+249e^{-t})^{4}}}

    which gave me the correct answer N''(7)= -23.7 , but looks rather clumsy in my opinion.

    In the answers section of the book they had come up with another expression for N''(t), namely this:

    {N''(t)}=\displaystyle{\frac{31000500e^{-2t}-62250e^{-t}(1+249e^{-t})}{(1+249e^{-t})^{3}}}

    How did they do that?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Nov 2008
    From
    France
    Posts
    1,458
    \displaystyle{N''(t)}=\frac{-62250e^{-t}(1+249e^{-t})^{2}-2(62250e^{-t})(1+249e^{-t})(-249e^{-t})}{(1+249e^{-t})^{4}}

    Simplification by 1+249e^{-t} gives


    \displaystyle{N''(t)}=\frac{-62250e^{-t}(1+249e^{-t})-2(62250e^{-t})(-249e^{-t})}{(1+249e^{-t})^{3}}


    {N''(t)}=\displaystyle{\frac{-62250e^{-t}(1+249e^{-t})+31000500e^{-2t}}{(1+249e^{-t})^{3}}}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Feb 2011
    Posts
    68
    Hmmm. I guess I was sloppy with my calculator then.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. y = e4x - 3 derive
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: March 31st 2011, 05:34 AM
  2. Replies: 2
    Last Post: March 27th 2011, 09:19 AM
  3. Did I derive this right?
    Posted in the Calculus Forum
    Replies: 12
    Last Post: May 1st 2010, 11:10 AM
  4. Derive tan (x/2)
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: April 25th 2010, 01:51 AM
  5. Derive 6 help please
    Posted in the Math Software Forum
    Replies: 0
    Last Post: April 8th 2009, 06:00 PM

Search Tags


/mathhelpforum @mathhelpforum