find the equation of circle with center on line y=3x and tangent to line x=2y at point (2,1).

I graphed the line for the circle, I graphed the tangent line. I cant tell how to find a point on the circle line thats distance from (2,1) is going to be less then the distance from that point to any other point on the tangent line.

I know (x,3x) is going to be the center. But how do I know that (x,3x) to (2,1) is more then (x,3x) to any other point on x=2y or (x,x/2).

I tried putting x,3x as the equation of a circle from 2,1 :

(2-x)^2+(1-3x)=r^2 and putting x=2y into this circle equation since x=2y == (x,x/2) and got (2-x)^2 + (1-3(x/2))^2 = r^2 but I kept going with this and got nowhere.

Im probably missing something. can someone please point me in the right direction?