Hi,
How do I compute square root of a complexed number without a calculator?
In other words how should I think and break down the following with just pen and paper?
$\displaystyle \displaystyle\sqrt{8i}$
I would appriciate any guidance.
Thank you
Hi,
How do I compute square root of a complexed number without a calculator?
In other words how should I think and break down the following with just pen and paper?
$\displaystyle \displaystyle\sqrt{8i}$
I would appriciate any guidance.
Thank you
Convert it to exponential form.
$\displaystyle \displaystyle \sqrt{8i} = \sqrt{8e^{\frac{\pi i}{2}}}$
$\displaystyle \displaystyle = 2\sqrt{2}(e^{\frac{\pi i}{2}})^{\frac{1}{2}}$
$\displaystyle \displaystyle = 2\sqrt{2}e^{\frac{\pi i}{4}}$
$\displaystyle \displaystyle = 2\sqrt{2}\left(\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}}\right)$
$\displaystyle \displaystyle = 2\sqrt{2}\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}i}{2}\right)$
$\displaystyle \displaystyle = 2 + 2i$.
Note that this only gives one of the square roots, but you can find the other using the fact that there are always 2 square roots and they are evenly spaced around a circle.
Hello, 4Math!
Here is a primitive method . . .
Find: .$\displaystyle \sqrt{8i}$
Let: $\displaystyle a + bi \:=\:\sqrt{8i}$ . where $\displaystyle \,a$ and $\displaystyle \,b$ are real.
Square both sides: .$\displaystyle (a + bi)^2\;=\;(\sqrt{8i})^2 $
And we have: .$\displaystyle (a^2-b^2) + (2ab)i \;=\;8i$
Equate real and imaginary components: .$\displaystyle \begin{array}{cccc}a^2-b^2 &=& 0 & [1] \\ 2ab &=& 8 & [2]\end{array}$
From [2] we have: .$\displaystyle b \:=\:\frac{4}{a}\;\;[3]$
Substitute into [1]: .$\displaystyle a^2 - \left(\tfrac{4}{a}\right)^2 \:=\:0 \quad\Rightarrow\quad a^4 \:=\:16$
. . Hence: .$\displaystyle a \:=\:\pm2$
Substitute into [3]: .$\displaystyle b \:=\:\dfrac{4}{\pm2} \:=\:\pm2$
Hence: .$\displaystyle a + bi \;=\;\pm2 \pm 2i$
Therefore: .$\displaystyle \sqrt{8i} \;=\;\pm2(1 + i)$