let $\displaystyle \alpha = \displaystyle\lim_{n\to\infty} \left(\frac{1^2 + 2^2 + ..... +n^2}{n^3}\right) $ and
$\displaystyle \beta = \displaystyle\lim_{n\to\infty} \left(\frac{(1^3 - 1^2 )+(2^3 -2^2 )+ ..... +(n^3 - n^2 )}{n^4}\right)$ ,then which of the following is correct
(A)$\displaystyle \alpha = \beta$
(B)$\displaystyle \alpha < \beta$
(C)$\displaystyle 4\alpha - 3\beta =0$
(D)$\displaystyle 3\alpha - 4\beta =0$