.
So that means and are factors.
From this, you have and by the factor theorem.
Substitute and solve the two resulting equations simultaneously.
Ok im studying for a maths exam and there is one equation i cant do..
If a factor of P(x)=-7+ax+5x^2+15x^3+bx^4 is (x^2-1) find the values of a and b?
here is the answer i cant work out how to do it any help is appreciated thanks
answer: a= -15 b= 2
thanks Tarik
ok another similiar question popped up and i tried to apply the same logic and bam i failed again :S
if (x+3) is a factor of f(x)= -x^3+bx^2+ax-18 and g(x)=ax^2+bx-75, find values of a and b
I begun with
f(-3)= -(-3)^3 + b(-3)^2+a(-3)-18
0=9+9b-3a
therefore a =3b+3
not sure what from here
thanks alot Prove it.. ok im going to start to become a nuisance here but i am now stuck on another question.. and btw im away so i have no teachers to help me before my exam soon
the graph of y= (a)/(x-b) + c has a vertical asymptote at x=2 and a horizontal asymptote at y=-1
a.) find values of b and c
which will be b = 2 and c=1
thus new equation is y= (a)/(x-2) + 1
This graph then udergoes following transformations
. reflection in the x axis
. dilation by a factor of 3 from the x axis
.horizontal shif of 2 units right
b.) if the intersection of the two graphs is at (m,2), find the value of m
c.)hence find the equation of the transformed graph
now im very lost here...
p.s is there any good way of doing fractions?
Ok, first it would really help if you'd learn some LaTeX, makes reading the questions a lot easier.
I assume that you have with vertical asymptote at and horizontal asymptote at .
Your value is correct, your value is not. It should be .
This is because it is a standard vertical translation of the hyperbola . This has horizontal asymptote at . By subtracting , it translates everything down by unit. So the value is .
So your equation is .
I'm sure you must have studied transformations, what you have had to do to translate, dilate and reflect your graph (they will be new constants appearing somewhere in the equation). Reread your notes to familiarise yourself with where these constants go to do these particular transformations.