1. ## [SOLVED] function

Let f be a function such that $f(n+1)=1-[f(n)]^2, \forall n\in\mathbb{Z}, n\geq0$. How would f(n+2) be expressed in terms of f(n)?

2. Originally Posted by dwsmith
Let f be a function such that $f(n+1)=1-[f(n)]^2, \forall n\in\mathbb{Z}, n\geq0$. How would f(n+2) be expressed in terms of f(n)?
$f(n+1)=1-[f(n)]^2$

$\implies f(n+2) = f\left\{(n+1)+1\right\}=1-[f(n+1)]^2 = 1 - \left\{ 1-[f(n)]^2 \right\}^2$

3. Ok that trumps the ... answer first posed.

4. Originally Posted by dwsmith
I am almost positive that isn't the answer but I could be wrong.
Which step do you disagree with, particularly?

5. Originally Posted by Anonymous1
Which step do you disagree with, particularly?
I don't disagree with that but when your response was first .... I was in disagreement.

6. Originally Posted by dwsmith
I don't disagree with that but when your response was first .... I was in disagreement.
Oh yeah that, haha.

When I am fairly certain I know the answer, I like to secure my position.

Cheers!