Results 1 to 2 of 2

Math Help - vector help, straight lines

  1. #1
    Super Member
    Joined
    Sep 2008
    Posts
    612

    vector help, straight lines

    Relative to a fixed origin, the points A, B and C have position vectors (2i − j + 6k),
    (5i − 4j) and (7i − 6j − 4k) respectively.
    (a) Show that A, B and C all lie on a single straight line.
    completely lost here, any help appreciated.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,806
    Thanks
    697
    Hello, Tweety!

    There are several ways to do this . . .


    Relative to a fixed origin, the points A, B, C have position vectors:
    . . (2i − j + 6k), (5i − 4j), (7i − 6j − 4k) respectively.

    (a) Show that A, B, C all lie on a single straight line.

    We have: . \begin{Bmatrix}A\!: & (2,\text{-}1,6) \\ B\!: & (5,\text{-}4,0) \\ C\!: & (7.\text{-}6.\text{-}4) \end{Bmatrix}

    Then: . \begin{array}{cccccc}\overrightarrow{AB} &=& \langle 3,\text{-}3,\text{-}6\rangle &=& 3\langle 1,\text{-}1,\text{-}2\rangle<br />
\\ \overrightarrow{BC} &=& \langle 2,\text{-}2,\text{-}4 \rangle &=& 2\langle1,\text{-}1,\text{-}2\rangle \end{array}


    The vectors are parallel and contain point B.
    Therefore, the points are collinear.




    \begin{array}{ccccccccc}<br />
|AB| &=& \sqrt{9 + 9 + 36} &=& \sqrt{54} &=& 3\sqrt{6} \\<br />
|BC| &=& \sqrt{4 + 4 + 16} &=& \sqrt{24} &=& 2\sqrt{6} \\<br />
|AC| &=& \sqrt{25 + 25 + 100} &=& \sqrt{150} &=& 5\sqrt{6} \end{array}


    Since |AB| + |BC| \:=\:|AC|, points A,B,C are collinear.




    We have: . \begin{array}{ccc}\overrightarrow{AB} &=& \langle 3,\text{-}3,\text{-}6\rangle \\ \overrightarrow{BC} &=& \langle 2,\text{-}2,\text{-}4\rangle \end{array}

    \text{The angle }\theta \text{ between }\overrightarrow{AB}\text{ and }\overrightarrow{BC}\text{ is given by: }\; \cos\theta \;=\;\frac{\overrightarrow{AB}\cdot \overrightarrow{BC}}{|\overrightarrow{AB}|\,|\over  rightarrow{BC}|}

    We have: . \cos\theta \;=\;\frac{\langle 3,\text{-}3,\text{-}6\rangle\cdot\langle 2,\text{-}2,\text{-}4\rangle}{\sqrt{9+9+36}\,\sqrt{4+4+16}} \;=\;\frac{6+6+24}{\sqrt{54}\,\sqrt{24}} \;=\;\frac{36}{36}\;=\;1


    Since \cos\theta \:=\:1, then: . \theta \:=\:0 \quad\Rightarrow\quad \overrightarrow{AB} \:\parallel\: \overrightarrow{BC}

    Therefore, points A,B,C are collinear.

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. 2 Questions concerning straight lines.
    Posted in the Algebra Forum
    Replies: 3
    Last Post: June 8th 2011, 05:34 AM
  2. angle between straight lines
    Posted in the Algebra Forum
    Replies: 2
    Last Post: March 17th 2010, 09:01 AM
  3. derivative to straight lines
    Posted in the Calculus Forum
    Replies: 2
    Last Post: February 25th 2010, 09:46 AM
  4. Vector - straight lines
    Posted in the Calculus Forum
    Replies: 2
    Last Post: November 12th 2008, 10:44 AM
  5. Straight Lines
    Posted in the Math Topics Forum
    Replies: 2
    Last Post: August 30th 2007, 07:06 AM

Search Tags


/mathhelpforum @mathhelpforum