what makes this matrix true?
$\displaystyle
(\begin{array}{|ccc|}x&2&-1\\0&y&w\end{array}
+ \begin{array}{|ccc|}0&1&2\\0&0&2\end{array})
* \begin{array}{|ccc|}1&1\\3&z\\4&2\end{array}
= \begin{array}{|ccc|}12&4\\2&2\end{array}
$
please help///
what makes this matrix true?
$\displaystyle
(\begin{array}{|ccc|}x&2&-1\\0&y&w\end{array}
+ \begin{array}{|ccc|}0&1&2\\0&0&2\end{array})
* \begin{array}{|ccc|}1&1\\3&z\\4&2\end{array}
= \begin{array}{|ccc|}12&4\\2&2\end{array}
$
please help///
I get
$\displaystyle \left(\begin{array}{ccc}x&3&1\\0&y&w+2\end{array}\ right)
\times \left(\begin{array}{ccc}1&1\\3&z\\4&2\end{array}\r ight)
= \left(\begin{array}{cc}x+9+4&x+3z+2\\3y+4(w+2)&yz+ 2(w+2)\end{array}\right)$
Now solve
$\displaystyle
\left(\begin{array}{cc}x+9+4&x+3z+2\\3y+4(w+2)&yz+ 2(w+2)\end{array}\right) = \left(\begin{array}{cc}12&4\\2&2\end{array}\right)
$
Might need to do some expanding on the LHS first!