The population of fish in a lake could be modeled by the function f(t)= 40t/(t^2+1), where t is given in days. The function that actually models the fish population is g(t)=45t/(t^2+8t+7). Determine where g(t)>f(t).
The population of fish in a lake could be modeled by the function f(t)= 40t/(t^2+1), where t is given in days. The function that actually models the fish population is g(t)=45t/(t^2+8t+7). Determine where g(t)>f(t).
you need to solve
Bring everything to the left side, combine, simplify and set both the numerator and denominator equal to zero. Solve for the t-values. Plot those on a number line, and test the intervals to see which ones you need.
The population of fish in a lake could be modeled by the function f(t)= 40t/(t^2+1), where t is given in days. The function that actually models the fish population is g(t)=45t/(t^2+8t+7). Determine where g(t)>f(t).