Results 1 to 11 of 11

Math Help - vectors - finding coordinates

  1. #1
    Member
    Joined
    Feb 2010
    Posts
    93

    vectors - finding coordinates

    Hi:
    I have this problem:
    The vector equation of the line Q is 2i+j+3k+λ(i+3j-5k) and the point P has coordinates (2, 3, -1). Find the coordinates of the point R, where R is on the line Q and the vector PR is perpendicular to Q.

    So:
    Q=2i+j+3k+λ(i+3j-5k)
    P=(2, 3, -1)
    R=( )

    If R is on the line Q, and PR is perpendicular to Q, doesn't this mean that R is at the point of intersection between Q and PR?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Grandad's Avatar
    Joined
    Dec 2008
    From
    South Coast of England
    Posts
    2,570
    Hello stealthmaths
    Quote Originally Posted by stealthmaths View Post
    Hi:
    I have this problem:
    The vector equation of the line Q is 2i+j+3k+λ(i+3j-5k) and the point P has coordinates (2, 3, -1). Find the coordinates of the point R, where R is on the line Q and the vector PR is perpendicular to Q.

    So:
    Q=2i+j+3k+λ(i+3j-5k)
    P=(2, 3, -1)
    R=( )

    If R is on the line Q, and PR is perpendicular to Q, doesn't this mean that R is at the point of intersection between Q and PR?
    Yes, but that doesn't help much. You need to say:
    \vec{PR} = \vec r - \vec p
    = \begin{pmatrix}2+\lambda\\1+3\lambda\\3-5\lambda\end{pmatrix} - \begin{pmatrix}2\\3\\-1\end{pmatrix}

    = \begin{pmatrix}\lambda\\-2+3\lambda\\4-5\lambda\end{pmatrix}
    The direction of the line Q is the vector \begin{pmatrix}1\\3\\-5\end{pmatrix}. Now use the fact that the scalar product of this vector with \vec{PR} is zero if the two vectors are perpendicular, to find the value of \lambda at R.

    Can you complete it now?

    Grandad
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Feb 2010
    Posts
    93
    Hi Grandad:
    So: multiplying the vector Q with coordinates of P = vector PR
    which is perpendicular to QP

    So, if I find the point of intersection of PR and Q - this is the coordinates of R

    Hopefully that's on the button:

    To find the points of intersection, do I need to solve the position vectors of these lines simultaneously?

    not sure how to do that with vectors
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Grandad's Avatar
    Joined
    Dec 2008
    From
    South Coast of England
    Posts
    2,570
    Hello stealthmaths
    Quote Originally Posted by stealthmaths View Post
    Hi Grandad:
    So: multiplying the vector Q with coordinates of P = vector PR
    which is perpendicular to QP

    So, if I find the point of intersection of PR and Q - this is the coordinates of R

    Hopefully that's on the button:

    To find the points of intersection, do I need to solve the position vectors of these lines simultaneously?

    not sure how to do that with vectors
    It sounds as if you haven't covered the basic things you need to know to solve this problem. You'll find some information about scalar (dot) products just here.

    Grandad
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Feb 2010
    Posts
    93
    Grandad:
    I'm aware of and can calculate the dot product. And that u.v=0 when two lines are perpendicular.
    But I think I'm having trouble visualizing this problem. It just seems a little abstract to me.
    We also use a different notation from you. We don't use the coordinates in bracket/parenthesis. I think this may also be throwing me a bit.
    But to my knowledge, if something multiplied by something is equal to zero, then one of them must be zero
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Member
    Joined
    Feb 2010
    Posts
    93
    Grandad:
    I think I may have finally got your message:
    Q.PR=(1+3-5)(1+3-5)=1+9+25
    =35

    |Q|=√1+3+5=√35
    |PR|=√1+3+5=√35

    cosθ=Q.PR/|Q||PR|=35/√35.√35
    =1

    θ=0

    No I didn't. This just proves the lines are perpendicular.

    Is the answer (2, 1, 3)?
    Last edited by stealthmaths; February 20th 2010 at 05:09 PM.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    MHF Contributor
    Grandad's Avatar
    Joined
    Dec 2008
    From
    South Coast of England
    Posts
    2,570
    Hello stealthmaths

    OK, here's the working using the other notation.

    The line Q has equation:
    \textbf{r} = 2\textbf i + \textbf j+3\textbf k+\lambda(\textbf i + 3\textbf j-5\textbf k)
    This means that, for any value of \lambda, the point R with position vector \textbf r is any general point on the line Q.

    The line joining the point P to the point R has vector given by:
    \textbf{PR} = \lambda\textbf i + (-2+3\lambda)\textbf j+(4-5\lambda)\textbf k
    The vector that determines the direction of Q, \textbf q, say, is:
    \textbf q =\textbf i + 3\textbf j-5\textbf k
    So PR is perpendicular to Q if:
    \textbf q.\textbf{PR} = 0

     \Rightarrow (\textbf i + 3\textbf j-5\textbf k).\Big(\lambda\textbf i + (-2+3\lambda)\textbf j+(4-5\lambda)\textbf k\Big) = 0

    \Rightarrow \lambda+3(-2+3\lambda)-5(4-5\lambda)=0
    Solve for \lambda and substitute back into the equation for \textbf r to find the coordinates of R.

    Can you complete it now?

    Grandad
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Member
    Joined
    Feb 2010
    Posts
    93
    Hi Grandad:
    Thank you so much for putting that into the form we are using at my school. . Although, I have to say that I prefer your method.

    λ+3(-2+3λ)-5(4-5λ)=0
    λ-6+9λ-20+20λ=0
    λ=-26+29λ=0
    -26+30λ=0
    30λ=26
    λ=13/15

    r=2i+j+3k+13/15(i+3j-5k)
    r=2i+j+3k+13/15i+2.6j-13/3k

    r=(43/15, 3.6, -4/3)

    Did I succeed in following correctly?
    Last edited by stealthmaths; February 21st 2010 at 07:11 AM. Reason: wanted to add workings
    Follow Math Help Forum on Facebook and Google+

  9. #9
    MHF Contributor
    Grandad's Avatar
    Joined
    Dec 2008
    From
    South Coast of England
    Posts
    2,570
    Hello stealthmaths

    Your method is now OK, but the arithmetic isn't quite correct. See below.

    Grandad
    Quote Originally Posted by stealthmaths View Post
    Hi Grandad:
    Thank you so much for putting that into the form we are using at my school. . Although, I have to say that I prefer your method.

    λ+3(-2+3λ)-5(4-5λ)=0
    λ-6+9λ-20+20λ=0 From Grandad....25λ
    λ=-26+29λ=0
    -26+30λ=0
    30λ=26
    λ=13/15 From Grandad....λ=26/35

    r=2i+j+3k+13/15(i+3j-5k)
    r=2i+j+3k+13/15i+2.6j-13/3k

    r=(43/15, 3.6, -4/3) From Grandad....r = (96/35, 113/35, -5/7) Not very nice numbers, are they?

    Did I succeed in following correctly?
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Member
    Joined
    Feb 2010
    Posts
    93
    yes. It seems that inputting values is not one of my skills. I will make more effort to check my work. It's just a little crazy with projects this week. Sorry.

    λ+3(-2+3λ)-5(4-5λ)=0
    λ-6+9λ-20+25λ=0
    -26+35λ=0
    35λ=26
    λ=26/35 From Grandad....λ=26/35

    r=2i+j+3k+26/35(i+3j-5k)
    r=2i+j+3k+26/35i+78/35j-26/7k

    r = (96/35, 113/35, -5/7) No. they are not very nice numbers. I think our tutor generates random numbers. She hands us assignments with the same questions for each student, but with different numbers. It does make things hard going and easy to mistake, actually. I hope she has more consideration when she sets the exam.

    Thank you for your guidance on this question Grandad. I will write up my assignment now. Though, I don't think I am comfortable with the process to come to this answer here. So, I would like to analyze it a little later and return to this post with a few question for you, no doubt. Hope that is ok?
    thanks again

    I have put my last post needed today in the geometry.
    "2(cd) intersecting lines"
    It is also a vector question. I recently received a warning from a moderator about putting vector questions in trig (i think trig). So, is geometry a better place for them on this site Grandad?
    Last edited by stealthmaths; February 21st 2010 at 09:21 AM. Reason: input error
    Follow Math Help Forum on Facebook and Google+

  11. #11
    MHF Contributor
    Grandad's Avatar
    Joined
    Dec 2008
    From
    South Coast of England
    Posts
    2,570
    Hello stealthmaths
    Quote Originally Posted by stealthmaths View Post
    I have put my last post needed today in the geometry.
    "2(cd) intersecting lines"
    It is also a vector question. I recently received a warning from a moderator about putting vector questions in trig (i think trig). So, is geometry a better place for them on this site Grandad?
    Yes. There's obviously some overlap between Geometry and Pre-Calculus (and you'll find vector questions posted in both), but Trigonometry it definitely isn't!

    Grandad
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Coordinates, vectors and cross products
    Posted in the Geometry Forum
    Replies: 3
    Last Post: October 15th 2010, 10:20 AM
  2. Vectors Coordinates of a cube.
    Posted in the Advanced Algebra Forum
    Replies: 6
    Last Post: August 14th 2010, 01:49 PM
  3. Replies: 1
    Last Post: April 26th 2010, 05:29 PM
  4. Cylindrical Coordinates and vectors
    Posted in the Calculus Forum
    Replies: 4
    Last Post: June 20th 2008, 05:04 AM
  5. angles and coordinates and vectors
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: March 7th 2007, 04:28 AM

Search Tags


/mathhelpforum @mathhelpforum