Hello, ^_^Engineer_Adam^_^!
Find the rectangular form of: . x .= .3·tan²θ . . y .= .2·sec²θ
. .    . . .x
We have: . .= .tan²θ . [1]
. .    . . .3
. .    . . y
. . . . . . .  .= .sec²θ . [2]
. .    . . 2
. . . . . . . . . . . . . . . . .y . .x
Subtract [1] from [2]: .    .= .sec²θ  tan²θ .= .1
. . . . . . . . . . . . . . . . .2 . .3
We have the line: .y .= .(2/3)x + 2
But be careful!
Since tan²θ > 0, then x > 0
Since sec²θ > 1, then y > 2
The graph looks like this: Code:
 *
 *
 *
 *
 *
2*


  +           
