The graph, y=f(x) has been transformed to y= af[ b(x-h) ] + k. Determine the values of a, b, h and k.

(1) Vertical expansion by a factor of 2, then a translation of 5 units left and 2 units up.

Answer key: a=2, b=1, h= -5 k=2

My workings:

y = 2f(x+5) + 2

Therefore, a=2, b=1, h= 5 k=2

Why is the answer key h= -5? Translation of 5 units left makes x=-5, so (x+5) and I can see that h is replaced by +5.

(2) A translation of 6 units right, then horizontal compression by a factor of 1/2 and a reflection in the x-axis.

Answer key: a=-1, b=2, h= 3 k=0

My workings:

y = -f[2(x-6)]

Therefore, a=-1, b=2, h= -6 k=0

Why is the answer key h= 3? Maybe I need to foil the expression such that:

2(x-6) = 0

2x -12 = 0

2x = 12

x=6

Even if I foil the expression, I should get 6 and not 3.