10. and are acute angles in quadrant I, with sin =7/25 and cos=5/13. Without using a calculator determine the values of sin( + ) and tan( + ).
So far i did
x^2 + y^2 = r^2
x^2 + 7^2 = 25^2
x^2= 625-49
x= +- 24
im not sure if thats even right...
10. and are acute angles in quadrant I, with sin =7/25 and cos=5/13. Without using a calculator determine the values of sin( + ) and tan( + ).
So far i did
x^2 + y^2 = r^2
x^2 + 7^2 = 25^2
x^2= 625-49
x= +- 24
im not sure if thats even right...
looks ok so far 24 is the adj side angle $\displaystyle \alpha $
looks like you need to use the sum formulas
$\displaystyle cos\alpha = \frac{24}{25}$ and $\displaystyle sin\beta = \frac{12}{5}$
$\displaystyle sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$
$\displaystyle Tan\alpha = \frac{7}{24} $
$\displaystyle Tan\beta = \frac{12}{5}$
$\displaystyle tan(\alpha + \beta) = \frac{tan\alpha + Tan\beta}{1 - tan\alpha tan\beta}$