I have problem solving function with definition
$\displaystyle f:[1,\infty)\rightarrow \mathbb{R}$
$\displaystyle f(x^2+1)=\vert x\vert + 2 x^2 + x^4$
for these two
$\displaystyle f(5)\ and\ f(x)$
im very lost...
$\displaystyle f(x^2+1)=\vert x\vert + 2 x^2 + x^4$
$\displaystyle = \vert x^2+1\vert + 2 x^2 + x^4$
since $\displaystyle x^2$ will always be positive then
$\displaystyle x^2+1 + 2( x^2+1)^2 +( x^2+1)^4$
---------------
$\displaystyle f(5)=\vert 5\vert + 2 x^2 + x^4 = 5 +2(5)^2 + (5)^4 = 680$