solve exponential equation using logs: (4^x) * (5^x) = 6^x
Follow Math Help Forum on Facebook and Google+
Originally Posted by GreenTea1mochi solve exponential equation using logs: (4^x) * (5^x) = 6^x $\displaystyle 4^x \cdot 5^x = 6^x$ $\displaystyle (4 \cdot 5)^x = 6^x$ $\displaystyle 20^x = 6^x$ $\displaystyle x\log(20) = x\log(6)$ $\displaystyle x\log(20) - x\log(6) = 0$ $\displaystyle x[\log(20) - \log(6)] = 0$ $\displaystyle x = 0$
Originally Posted by GreenTea1mochi solve exponential equation using logs: (4^x) * (5^x) = 6^x A different method $\displaystyle log(4^x 5^x) = x\,log(6)$ $\displaystyle x\,log(4)+x\,log(5) = x\,log(6)$ $\displaystyle x(log(4)+log(5)-log(6))=0$ $\displaystyle x = 0$
View Tag Cloud