# Thread: Area of a sector

1. ## Area of a sector

The area of a circle is 72cm^2. Find the area of a sector of this circle that subtends a central angle of pi/6 rad.

Thanks!

2. Originally Posted by Chinnie15
The area of a circle is 72cm^2. Find the area of a sector of this circle that subtends a central angle of pi/6 rad.

Thanks!
$A_{sector} = \frac{1}{2}r^2 \theta$

A whole circle may be considered to be a sector:
• $A_{sector} = 72$
• $\theta = 2\pi$

From this you can find r and then find the area of the sector.

Spoiler:
Rearranging the equation to find r and then plugging that expression in provides a way to find A in one step

$r = \sqrt{\frac{2A_{c}}{\theta_{c}}}$

$A_s = A_c \, \frac{\theta_{s}}{\theta_c}$

Where:

• $A_s$= Area of Sector
• $A_c$ = Area of Circle ( $72\, cm^2$)
• $\theta_{c}$ = Angle of Circle ( $2\pi$)
• $\theta_s$ = Angle subtended by sector ( $\frac{\pi}{6}$

3. Hello Chinnie15
Originally Posted by Chinnie15
The area of a circle is 72cm^2. Find the area of a sector of this circle that subtends a central angle of pi/6 rad.

Thanks!
The whole circle ( $72\,cm^2$) subtends an angle of $2\pi$ at the centre. The sector you want subtends an angle of $\frac{\pi}{6}$ which is $\frac{1}{12}$ of $2\pi$. So its area is ...?

4. I figured it out, thanks!

,

,

,

,

# Find The Area Of An Arc Subtended At An Angle 0f 72.If The Area Is 30.8 Square Centimetre

Click on a term to search for related topics.