Results 1 to 2 of 2

Thread: Complex Numbers Q

  1. #1
    Junior Member
    Sep 2009

    Complex Numbers Q

    P, Q represent complex numbers $\displaystyle \alpha ,\beta $ respectively where O is the origin and O, P, Q are not collinear. In triangle OPQ, the median from O to the midpoint M of PQ meets the median from Q to the midpoint N of OP in the point R, where R represents the complex number z.

    Show that $\displaystyle z=\frac{1}{3}(\alpha +\beta )$ and deduce that R is the point of concurrence of the three medians of triangle OPQ
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor red_dog's Avatar
    Jun 2007
    Medgidia, Romania
    We have $\displaystyle O(0), \ P(\alpha), \ Q(\beta), \ M\left(\frac{\alpha+\beta}{2}\right), \ N\left(\frac{\alpha}{2}\right), \ R(z)$.

    Let $\displaystyle \frac{NR}{RQ}=k, \ \frac{MR}{RO}=k_1$. Then

    $\displaystyle z=\frac{z_N+kz_Q}{1+k}=\frac{\alpha}{2(1+k)}+\frac {\beta k}{1+k}$

    and $\displaystyle z=\frac{z_M+k_1z_O}{1+k_1}=\frac{\alpha}{2(1+k_1)} +\frac{\beta}{2(1+k_1)}$

    Then $\displaystyle \left\{\begin{array}{ll}\frac{1}{2(1+k)}=\frac{1}{ 2(1+k_1)}\\\frac{k}{1+k}=\frac{1}{2(1+k_1)}\end{ar ray}\right.$

    $\displaystyle \Rightarrow k=k_1=\frac{1}{2}\Rightarrow z=\frac{1}{3}(\alpha+\beta)$.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. raising complex numbers to complex exponents?
    Posted in the Advanced Math Topics Forum
    Replies: 10
    Last Post: Mar 25th 2011, 10:02 PM
  2. Replies: 1
    Last Post: Sep 27th 2010, 03:14 PM
  3. Replies: 2
    Last Post: Feb 7th 2009, 06:12 PM
  4. Replies: 1
    Last Post: May 24th 2007, 03:49 AM
  5. Complex Numbers- Imaginary numbers
    Posted in the Algebra Forum
    Replies: 2
    Last Post: Jan 24th 2007, 12:34 AM

Search Tags

/mathhelpforum @mathhelpforum