1. ## M.S.

I will present you a math composed of only two basis (natural and realistic basis)

Current mathematics (CM.)

Natural Base
-natural straight line the main axiom, its beginning or end point and natural straight line a defined length and with two points
NOTATION - natural straight line (lower case), points (capital letters or numbers (when specified point uploads metric (such as the number line)))

-natural gaps negation natural straight line , natural emptiness and emptiness is defined with two points
NOTATION - natural gaps (small underlined letter)

-basic rule merger - natural straight line and natural gaps are connected only points
-basic set - all possibilities defined theorem
(CM.)does not know the natural straight line , point is not defined, knows no natural gap, is not defined by basic set

2. ## Re: M.S.

Theorem - Natural straight line (natural gap) are connected in the direction of the points AB (0.1)
PROOF - straight line (gaps) b ( $\underline{b}$) -defined AC (0,2)

- straight line (gaps) c ( $\underline{c}$) -defined AD (0,3)
[attachment=19586]

infinite one way straight line (oneway infinite gaps) ∞ ( $\underline{\infty}$) defined A∞ (0, ∞)

(CM.) - straight line (not from the natural basis), there is gaps, a one-way infinite straight line the (semi-line (not from natural base)), one-way infinite gaps does not exist

3. ## Re: M.S.

Theorem - there is a relationship between the points 0 and all points one-way infinite straight line(one-way infinite gaps) including points 0

PROOF - relationship points 0 points 0 and the number 0

-relationship points 0 points 1 and the number 1( $\underline{1}$)

-relationship points 0 points 2 and the number 2 ( $\underline{2}$)

...

basic set of natural numbers $N^o=\{0 , 1 , 2 ,3 ,4 ,5 ,...\}$
basic set of natural numbers gaps $N_p^o=\{0 , \underline{1} ,\underline{2} ,\underline{3} ,\underline{4} ,\underline{5} ,...\}$

(CM.) - natural numbers are given as an axiom, there is no natural gaps numbers (there is this form, but do not call numbers $(\{0,0\}\cup\{a,a\} a\in N)$

4. ## Re: M.S.

Theorem - natural numbers and natural numbers gaps can be connected in the direction AB (0.1)

PROOF - Number 1 and number $\underline {1}$receives the combined number of $1\underline {1}$ or dup (duž , praznina )

-Number $\underline {1}$ and number 1 receives the combined number of $\underline {1}1$ or dup

-Number 1 and number $\underline {2}$ receives the combined number of $1\underline {2}$ or dup

...
- A basic set of combined natural numbers $K^o=(a_n,\underline{b}_n,a_n\in{N^o},\underline{b} _n\in{N_p^o},(a_n,\underline{b}_n)>0)$

$a_1\underline{b}_1$
$\underline{b}_1a_1$
$a_1\underline{b}_1a_2$
$\underline{b}_1a_1\underline{b}_2$
...

(CM.) - Dup do not know, not know the combined numbers (there is this form, but not numbers $\{0,a\}\cup\{c,c\},\{0,0\}\cup\{a,b\},\{0,b\}\cup\ {c,d\},\{0,0\}\cup\{a,b\}\cup\{c,c\},...$ )

5. ## Re: M.S.

Theorem - Two numbers have contact, their condition is described counts of first number

PROOF - number 3 and number 2 have a contact at point 0
$3^{\underline{0}} 2$

- number 3 and number 2 have a contact at point 1
$3^{\underline{1}}2$

- number 3 and number 2 have a contact at point 2
$3^{\underline{2}}2$

- number 3 and number 2 have a contact at point 3
$3^{\underline{3}}2$

(CM.) - Knows no contact numbers

6. ## Re: M.S.

Theorem - The contact number is sorted horizontally only be a natural straight line that gives a natural straight line

proof - $1\rightarrow 1$

4 ${+_1^{\underline0}}$2=2

4 ${+_1^{\underline1}}$2=(1,1)

4 ${+_1^{\underline2}}$2=2

4 ${+_1^{\underline3}}$2=(3,1)

4 ${+_1^{\underline4}}$2=6 or 4+2=6

$+_1$ - addition rule 1

(CM.) - There are no "addition rule 1" only when the contact point number, Axiom

we were the first form of addition, the advantage of my mathematics
-----------

question for trained mathematicians, which is a procedure to be applied in order to get (a sign?)
4 ? 2=2
4 ? 2=(1,1)
4 ? 2 =2
4 ? 2=(3,1)
4+2=6 This is known
more complex
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (1,1,1,2) my solution and notation $4\underline23\underline22{+_1^{\underline0}}3 \underline25$=(1,1,1,2)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (1,4) my solution and notation $4\underline23\underline22{+_1^{\underline1}}3 \underline25$=(1,4)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (2,1,1,2,1) my solution and notation $4\underline23\underline22{+_1^{\underline2}}3 \underline25$=(2,1,1,2,1)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (3,4,2) my solution and notation $4\underline23\underline22{+_1^{\underline3}}3 \underline25$ =(3,4,2)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (6,4,1) my solution and notation $4\underline23\underline22{+_1^{\underline4}}3 \underline25$=(6,4,1)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,1,1,1,2) my solution and notation $4\underline23\underline22{+_1^{\underline5}}3 \underline25$=(4,1,1,1,2)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,3) my solution and notation $4\underline23\underline22{+_1^{\underline6}}3 \underline25$=(4,3)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,1,1,4) my solution and notation $4\underline23\underline22{+_1^{\underline7}}3 \underline25$=(4,1,1,4)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,2,2,5) my solution and notation $4\underline23\underline22{+_1^{\underline8}}3 \underline25$=(4,2,2,5)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,5,5) my solution and notation $4\underline23\underline22{+_1^{\underline9}}3 \underline25$=(4,5,5)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,3,1,5) my solution and notation $4\underline23\underline22{+_1^{\underline{10}}}3 \underline25$=(4,3,1,5)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,3,1,5) my solution and notation $4\underline23\underline22{+_1^{\underline{11}}}3 \underline25$=(4,3,1,5)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,3,2,5) my solution and notation $4\underline23\underline22{+_1^{\underline{12}}}3 \underline25$=(4,3,2,5)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,3,3,5) my solution and notation $4\underline23\underline22{+_1^{\underline{13}}}3 \underline25$=(4,3,3,5)
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = (4,3,3,5) my solution and notation $4\underline23\underline22{+_1^{\underline{14}}}3 \underline25$=(4,3,3,5)

7. ## Re: M.S.

Theorem - The contact numbers is sorted horizontally to be the only one natural straight line that gives a natural straight line , when there are two (more) results between them becomes a gap.

PROOF - $1\rightarrow1(\underline{1})$

$4{+_2^{\underline0}}2=2$
$4{+_2^{\underline1}}2=1 \underline{2}1$
$4{+_2^{\underline2}}2=2$
$4{+_2^{\underline3}}2=3 \underline{1}1$
$4{+_2^{\underline4}}2=6$

(CM.) - No "addition rule 2"
more complex
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = {0,1} $\cup${2,3} $\cup${6,7} $\cup${8,10} my solution and notation $4\underline23\underline22{+_{2}^{\underline0}}3 \underline25$=111311​2
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} = {0,1} $\cup${9,13} my solution and notation $4\underline23\underline22{+_{2}^{\underline1}}3 \underline25$=18​4
{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} ={0,2} $\cup${4,5} $\cup${6,7} $\cup${9,11} $\cup${12,13} my solution and notation $4\underline23\underline22{+_{2}^{\underline2}}3 \underline25$=22111221​1
...

{0,4} $\cup${6,9} $\cup${11,13} ? {0,3} $\cup${5,10} ={0,4} $\cup${6,9} $\cup${11,16} $\cup${18,23} my solution and notation $4\underline23\underline22{+_{2}^{\underline{13}}}3 \underline25$=423252​5

8. ## Re: M.S.

Theorem - contact number is sorted horizontally, two natural straight line provide a natural straight line

Proof - $11\rightarrow1$

$2\underline{2 }2+_3^{\underline0}2\underline{2 }2=(2,2)$

$2\underline{2 }2+_3^{\underline1}2\underline{2 }2=(1,1)$

$2\underline{2 }2+_3^{\underline2}2\underline{2 }2=0$

$2\underline{2 }2+_3^{\underline3}2\underline{2 }2=1$

$2\underline{2 }2+_3^{\underline4}2\underline{2 }2=2$

$2\underline{2 }2+_3^{\underline5}2\underline{2 }2=1$

$2\underline{2 }2+_3^{\underline6}2\underline{2 }2=0$

$+_3$ - addition rule 3

(CM.) - No "addition rule 3"

9. ## Re: M.S.

This all a matter of definitions. Do you have a point to all of this?

-Dan

10. ## Re: M.S.

Originally Posted by topsquark
This all a matter of definitions. Do you have a point to all of this?

-Dan
I regard them as evidence, I have the author

Theorem - contact numbers, sorting is done horizontally, two natural straight lines provide a natural straight line , when there arre two (more) results between them becomes void.

Proof $11\rightarrow1(\underline1)$

$2\underline{2 }2+_4^{\underline0}2\underline{2 }2=2\underline2 2$

$2\underline{2 }2+_4^{\underline1}2\underline{2 }2=1\underline3 1$

$2\underline{2 }2+_4^{\underline2}2\underline{2 }2=0$

$2\underline{2 }2+_4^{\underline3}2\underline{2 }2=1$

$2\underline{2 }2+_4^{\underline4}2\underline{2 }2=2$

$2\underline{2 }2+_4^{\underline5}2\underline{2 }2=1$

$2\underline{2 }2+_4^{\underline6}2\underline{2 }2=0$

$+_4$ - addition rule 4

(CM.) - No "addition rule 4"

11. ## Re: M.S.

Again you are simply writing a result of your definitions in terms of your definitions. Your "numerical" notations seem to do nothing more than provide a different way of writing your diagrams. You don't seem to have created anything that isn't internal to your system. What do the diagrams mean in terms of, say, Euclidean geometry? Could you provide an example of how you apply this to a geometry problem and how it differs from the "standard" Euclidean geometry approach?

-Dan

12. ## Re: M.S.

Originally Posted by topsquark
differs from the "standard" Euclidean geometry approach?

-Dan
defines the term points. gaps as a concept was introduced,

Since you have the most current knowledge in mathematics ask you a question , we have $a=\{0,4\}\cup\{6,9\}\cup\{11,13\}$ , $b=\{0,3\}\cup\{5,10\}$ that should be applied a mathematical method to obtain different results of $c_n$

$c_1=(1,1,1,2)$ My notation and solution $4\underline23\underline22{+_1^{\underline0}}3 \underline25=(1,1,1,2)$ ...
$c_2=(1,4)$ -- $4\underline23\underline22{+_1^{\underline1}}3 \underline25=(1,4)$...
$c_3=(2,1,1,2,1)$-- $4\underline23\underline22{+_1^{\underline2}}3 \underline25=(2,1,1,2,1)$...
$c_4=(3,4,2)$-- $4\underline23\underline22{+_1^{\underline3}}3 \underline25=(3,4,2)$...
$c_5=(6,4,1)$-- $4\underline23\underline22{+_1^{\underline4}}3 \underline25=(6,4,1)$...
$c_6=(4,1,1,1,2)$-- $4\underline23\underline22{+_1^{\underline5}}3 \underline25=(4,1,1,1,2)$...
$c_7=(4,3)$-- $4\underline23\underline22{+_1^{\underline6}}3 \underline25=(4,3)$...
$c_8=(4,1,1,1,4)$-- $4\underline23\underline22{+_1^{\underline7}}3 \underline25=(4,1,1,1,4)$...
$c_9=(4,2,9)$--- $4\underline23\underline22{+_1^{\underline8}}3 \underline25=(4,2,9)$...
$c_{10}=(4,5,5)$-- $4\underline23\underline22{+_1^{\underline9}}3 \underline25=(4,5,5)$...
$c_{11}=(4,3,1,5)$-- $4\underline23\underline22{+_1^{\underline{10}}}3 \underline25=(4,3,1,5)$...
$c_{12}=(4,3,1,5)$-- $4\underline23\underline22{+_1^{\underline{11}}}3 \underline25=(4,3,1,5)$...
$c_{13}=(4,3,2,5)$-- $4\underline23\underline22{+_1^{\underline{12}}}3 \underline25=(4,3,2,5)$...
$c_{14}=(4,3,3,5$-- $4\underline23\underline22{+_1^{\underline{13}}}3 \underline25=(4,3,3,5)$

show me the solution for the first part

13. ## Re: M.S.

Originally Posted by point1967
defines the term points. gaps as a concept was introduced,

Since you have the most current knowledge in mathematics ask you a question , we have $a=\{0,4\}\cup\{6,9\}\cup\{11,13\}$ , $b=\{0,3\}\cup\{5,10\}$ that should be applied a mathematical method to obtain different results of $c_n$

$c_1=(1,1,1,2)$ My notation and solution $4\underline23\underline22{+_1^{\underline0}}3 \underline25=(1,1,1,2)$ ...
I'll take for granted that you have done this correctly in terms of your notation. But what does it actually mean? What advantage do we get by putting it in terms of this notation?

-Dan

14. ## Re: M.S.

Originally Posted by topsquark
I'll take for granted that you have done this correctly in terms of your notation. But what does it actually mean? What advantage do we get by putting it in terms of this notation?

-Dan
whether current mathematics has solutions for different values of $c_n$ for the values of $a$ and $b$, if no then my math better

15. ## Re: M.S.

I still don't get it. All you have done here is to invent a notation for line segments and gaps in those segments. It would appear that all you have done is redefine natural numbers as points on the real line. There's nothing wrong with that but my question still stands...Other than present a way to write notation for line segments what is the use of this? If it's simply to show that you can do the same things (or more) than traditional geometry then great. Show us what this can do for geometry. If I am wrong then please show me where.

-Dan

Page 1 of 2 12 Last