Given :
$\displaystyle
f\left( x \right) = x^5 + 101x^4 + 2373x^3 - 15093x^2 - 211006x + 936360$
Prove that, $\displaystyle f\left( x \right) \equiv 0\left[ {\bmod 1929375} \right]$$\displaystyle
$ has 3168 solutions.
Given :
$\displaystyle
f\left( x \right) = x^5 + 101x^4 + 2373x^3 - 15093x^2 - 211006x + 936360$
Prove that, $\displaystyle f\left( x \right) \equiv 0\left[ {\bmod 1929375} \right]$$\displaystyle
$ has 3168 solutions.