Given :

$\displaystyle

f\left( x \right) = x^5 + 101x^4 + 2373x^3 - 15093x^2 - 211006x + 936360$

Prove that, $\displaystyle f\left( x \right) \equiv 0\left[ {\bmod 1929375} \right]$$\displaystyle

$has 3168 solutions.

Printable View

- Aug 29th 2009, 12:48 AMdhiabConguence has :3168 solutions !!!! ????
**Given :**

$\displaystyle

f\left( x \right) = x^5 + 101x^4 + 2373x^3 - 15093x^2 - 211006x + 936360$

**Prove that, $\displaystyle f\left( x \right) \equiv 0\left[ {\bmod 1929375} \right]$**$\displaystyle

$**has 3168 solutions.**