Results 1 to 4 of 4

Math Help - Combinatoire -Problem

  1. #1
    Super Member dhiab's Avatar
    Joined
    May 2009
    From
    ALGERIA
    Posts
    534

    Combinatoire -Problem

    Find all naturels numbers then this numbers , in this order, is the terms of arithmetic sequence.
    remark :
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6
    Quelques remarques...

    1. "naturel" se traduit par "natural" et en anglais, pas de s aux adjectifs
    2. ici, ce n'est pas "then", mais "such that"
    3. "combinatoire" se traduit par "combinatorics", même si ici, ça fait plus allusion à "combination" (pour combinaison)
    4. même en anglais, on conjugue les verbes il y a plusieurs termes, donc c'est "are". Même remarque pour "this numbers", le pluriel de this est "these"

    Si tu ne sais pas comment traduire un mot mathématique, cherche la page wikipedia correspondante et prends la page en anglais (en sélectionnant la langue sur la gauche)

    Pourquoi ne pas utiliser le latex du forum ?

    -----------------------------------
    Note that n\geq 6, otherwise, it doesn't make sense.

    If these terms belong to an arithmetic sequence, then let the constant progression be r. Note that depending on the value of n, r can be positive or negative.

    Then \exists k,k' \in\mathbb{N}^* such that :

    C_5^n-C_4^n=kr

    C_6^n-C_5^n=k'r


    After several calculations, we arrive at :

    C_5^n-C_4^n=\frac{n!}{(n-4)!5!} \cdot (n-9)

    C_6^n-C_5^n=\frac{n!}{(n-5)!6!}\cdot (n-11)

    n cannot be 9 or 11, because the difference cannot be 0.

    \frac{k'}{k}=\dots=\frac{(n-11)(n-4)}{6(n-9)} \quad (1)

    n cannot be 10, otherwise k'/k is negative, which is a contradiction to the assumption.
    if n=12, then there is a problem, as C_6^n\leq C_4^n \leq C_5^n. Contradiction because the order counts. (intuitively, they have to be on the same "half" of n... look at Pascal's triangle to have an idea)


    If these are consecutive terms of an arithmetic sequence, then by (1) the solutions are n=7 and n=14 (it's a matter of solving a quadratic equation)

    If not, I think that all natural numbers are solutions, except 1,2,3,4,5,9,10,11,12
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor red_dog's Avatar
    Joined
    Jun 2007
    From
    Medgidia, Romania
    Posts
    1,252
    Thanks
    5
    I think there is some confusion about the notation of combinatorics.

    In my country C_n^k=\frac{n!}{k!(n-k)!}, \ 0\leq k\leq n

    Using this formula we have:

    \frac{2\cdot 5!}{n!(5-n)!}=\frac{4!}{n!(4-n)!}+\frac{6!}{n!(6-n)!}\Rightarrow\frac{10}{5-n}=1+\frac{30}{(5-n)(6-n)}\Rightarrow

    \Rightarrow n^2-n=0\Rightarrow n\in\{0,1\}
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,740
    Thanks
    645
    Hello, dhiab!

    Find all natural numbers such that: . C^n_4,\:C^n_5,\:C^n_6 form an arithmetic progression.
    d = common difference: . a_2 - a_1 \;=\;a_3-a_2 \;=\;d

    We have: . C^n_5 - C^n_4 \;=\;C^n_6 - C^n_5 \quad\Rightarrow\quad \frac{n!}{5!(n-5)!}- \frac{n!}{4!(n-4)!} \;=\;\frac{n!}{6!(n-6)!} - \frac{n!}{5!(n-5)!}

    Multiply by \frac{6!(n-4)!}{n!}\!:\quad 6(n-4) - 30 \;=\;(n-4)(n-5) - 6(n-4)

    . . which simplifies to: . n^2 - 21n + 98 \:=\:0 \quad\Rightarrow\quad (n-7)(n-14) \:=\:0

    . . and has roots: . \boxed{n \:=\:7,\:14}


    The two sequences are:

    . . \begin{array}{ccccc}n = 7\!: & C^7_4,\:C^7_5,\:C^7_6 &=& 35,\:21,\:7 \\ \\[-3mm]<br />
n = 14\!: & C^{14}_4,\:C^{14}_5,\:C^{14}_6 &=&1001,\:2002,\:3003 \end{array}

    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum