1. ## Diophantine Equations

Suppose the x=x0 > 0, y = y0 > 0 is a solution to x^2 - 3y^2 =6
Show that x1 = 2x0 + 3y0, y1= x0 + 2y0 is also a solution with x1 > x0 > 0, y1 > y0 >0. Can you find one solution to x^2 - 3y^2 =6 that results in there being infinitely many solutions? What would the next three solutions be in the ascent?

2. Suppose that $\displaystyle x=x_0 > 0, y = y_0 > 0$ is a solution to $\displaystyle x^2 - 3y^2 =6$

Then, $\displaystyle x_0^2 - 3y_0^2 =6$--------------(1)

$\displaystyle x_1^2-3y_1^2=(2x_0+3y_0)^2-3(x_0+2y_0)^2$

$\displaystyle x_1^2-3y_1^2=(4x_0^2+9y_0^2+12x_0y_0)-3(x_0^2+4y_0^2+4x_0y_0)$

$\displaystyle x_1^2-3y_1^2=x_0^2-3y_0^2=6$ {Using (1)}

Thus $\displaystyle x_1 = 2x_0 + 3y_0, y_1= x_0 + 2y_0$ is also a solution with $\displaystyle x_1 > x_0 > 0,\ y_1 > y_0 >0$

--------------------------------------------------------------------------------------------------------------------

$\displaystyle (3, 1)$ is a solution to $\displaystyle x^2 - 3y^2 =6$

--------------------------------------------------------------------------------------------------------------------

$\displaystyle x_0=3$ and $\displaystyle y_0=1$

$\displaystyle x_1 = 2x_0 + 3y_0$ and $\displaystyle y_1= x_0 + 2y_0$

$\displaystyle x_1=9$ and $\displaystyle y_1=5$

$\displaystyle x_2= 2x_1 + 3y_1$ and $\displaystyle y_2= x_1 + 2y_1$

$\displaystyle x_2=33$ and $\displaystyle y_2=19$

$\displaystyle x_3= 2x_2 + 3y_2$ and $\displaystyle y_3= x_2+ 2y_2$

$\displaystyle x_3=123$ and $\displaystyle y_3=71$

--------------------------------------------------------------------------------------------------------------------

The next three solutions in the ascent are $\displaystyle (9, 5), (33, 19), (123, 71)$.