1. ## exponents

For $n>1$, define $E(n)$ oto be the highest exponent to which a prime divides it. For instance, $E(12)=E(36)=2$. Prove that $\lim_{N \to \infty} \frac{1}{N} \sum\limits_{n=2}^{N}E(n)$exists.

2. Previous Result: The cardinal of: $
\left\{ {x \in \mathbb{Z}^ + /x \leqslant n{\text{ and }}p^j \not | x{\text{ }}\forall p{\text{ prime}}} \right\}
$
is $
\sum\limits_{k = 1}^\infty {\left\lfloor {\tfrac{n}
{{k^j }}} \right\rfloor \cdot \mu \left( k \right)}
$
where $
\left\lfloor x \right\rfloor
$
is the floor function and $\mu(n)$ is the Möbius function.

Proof

Consider: $A=
\bigcup\limits_{p{\text{ prime}}} {\left\{ {x \in \mathbb{Z}^ + /x \leqslant n{\text{ and }}\left. {p^j } \right|x} \right\}}
$
, the cardinal of this set is, by inclusion-exclusion: $
\sum\limits_{p{\text{ prime}}} {\left| {\left\{ {x \in \mathbb{Z}^ + /x \leqslant n{\text{ and }}\left. {p^j } \right|x} \right\}} \right|} - \sum\limits_{p > q{\text{ primes}}} {\left| {\left\{ {x \in \mathbb{Z}^ + /x \leqslant n{\text{ and }}\left. {\left( {pq} \right)^j } \right|x} \right\}} \right|} \pm ...
$

But: $
\left| {\left\{ {x \in \mathbb{Z}^ + /x \leqslant n{\text{ and }}\left. m \right|x} \right\}} \right| = \left\lfloor {\tfrac{n}
{m}} \right\rfloor
$
thus note that we can write: $
A = - \sum\limits_{k = 2}^\infty {\left\lfloor {\tfrac{n}
{{k^j }}} \right\rfloor \cdot \mu \left( k \right)}
$
but we want $
{\bar A}
$
and the rest follows. $\square$

At this point, note that every number that is free of squares, is free of cubes ... and so on. Further, if a number $x$ is free of cubes, but not of squares, then $E(x)=2$

That is: $
\sum\limits_{k = 1}^\infty {\left\lfloor {\tfrac{n}
{{k^{j + 1} }}} \right\rfloor \cdot \mu \left( k \right)} - \sum\limits_{k = 1}^\infty {\left\lfloor {\tfrac{n}
{{k^j }}} \right\rfloor \cdot \mu \left( k \right)} = \left| {\left\{ {x \in \mathbb{Z}^ + /x \leqslant n{\text{ and }}E\left( x \right) = j} \right\}} \right|
$

Thus we get: $
\sum\limits_{k = 1}^n {E\left( k \right)} = \sum\limits_{j = 1}^\infty {\left( {\sum\limits_{k = 1}^\infty {\left( {\left\lfloor {\tfrac{n}
{{k^{j + 1} }}} \right\rfloor - \left\lfloor {\tfrac{n}
{{k^j }}} \right\rfloor } \right) \cdot \mu \left( k \right)} } \right) \cdot j}
$
(This is already very suggestive)

Mmmm, here I've not been able to finish it formally -it gets quite nasty-, but I do think that: $
\mathop {\lim }\limits_{n \to + \infty } \tfrac{1}
{n} \cdot \sum\limits_{k = 1}^n {E\left( k \right)} =
{\tfrac{1}
{{\zeta \left( {2} \right)}}}
+ \sum\limits_{j = 2}^\infty {\left( {\tfrac{1}
{{\zeta \left( {j + 1} \right)}} - \tfrac{1}
{{\zeta \left( j \right)}}} \right) \cdot j}
$
-remember $
\sum\limits_{k = 1}^\infty {\tfrac{{\mu \left( k \right)}}
{{k^s }}} = \tfrac{1}
{{\zeta \left( s \right)}}
$
and $
\sum\limits_{k = 1}^\infty {\left\lfloor {\tfrac{n}
{k}} \right\rfloor \cdot \mu \left( k \right)} = \sum\limits_{k = 1}^n {\sum\limits_{\left. d \right|k} {\mu \left( d \right)} } = 1
$
-