Question:
Let a,b be distinct prime numbers.
Show that (a^(b-1) + b^(a-1) - 1) / (a*b) is an integer.
Should be easy but Im just completly blanked out...
Thank you
Hi Fulger85.
By Fermat’s little theorem, $\displaystyle a$ divides $\displaystyle b^{a-1}-1;$ therefore $\displaystyle a$ divides $\displaystyle a^{b-1}+b^{a-1}-1.$
Similarly $\displaystyle b$ divides $\displaystyle a^{b-1}-1$ and so $\displaystyle b$ divides $\displaystyle b^{a-1}+a^{b-1}-1.$
Hence $\displaystyle \mathrm{lcm}(a,b)=ab$ divides $\displaystyle a^{b-1}+b^{a-1}-1.$
Property of lcm. If $\displaystyle x|z,y|z$ then $\displaystyle \text{lcm}(x,y) |z$, for $\displaystyle x,y,z\in \mathbb{Z}^+$.
---
Your problem can be generalized to $\displaystyle a^{\phi(b)} + b^{\phi(a)} \equiv 1(\bmod ab)$ for relatively prime positive integers $\displaystyle a,b$.