1. ## Coprime Theorem

Prove or give a counterexample:

For three positive integers $\displaystyle u_1<u_2<u_3$, if $\displaystyle gcd(u_2,u_3)=gcd(u_1,u_3)=gcd(u_1,u_2)=1$ then $\displaystyle gcd(u_1u_2u_3,u_2u_3+u_1u_3+u_1u_2)=1$

Note: This is stronger than the condition that $\displaystyle gcd(u_1,u_2,u_3)=1$, since examples like $\displaystyle (1,3,6)$ prove false.

2. ## Okay, I think I've got it.

Let $\displaystyle a,b,c$ be nonzero integers
Lemma 1: If $\displaystyle (a,b)=1$, then $\displaystyle (a,a+b)=1$
Lemma 2: if $\displaystyle (a,b)=1$ and $\displaystyle (a,c)=1$, then $\displaystyle (a,bc)=1$

Theorem: If $\displaystyle a<b<c$ are positive integers such that any two are coprime, then $\displaystyle gcd(abc , bc+ac+ab)=1$

Proof:

$\displaystyle (a,b)=1$
By (1), $\displaystyle (a,a+b)=1$ and $\displaystyle (b,a+b)=1$
By (2), $\displaystyle (ab,a+b)=1$
$\displaystyle (ab,c)=1$
By (2), $\displaystyle (ab, c(a+b))=(ab,ac+bc)=1$
By (1), $\displaystyle (ab,ab+ac+bc)=1$
WLOG, this means $\displaystyle (ab,ab+ac+bc)= (bc,ab+ac+bc)= (ac,ab+ac+bc)=1$
Therefore, by (2), $\displaystyle (a^2b^2c^2,ab+ac+bc)=1$ so $\displaystyle (abc,ab+ac+bc)=1$
Q.E.D.

Can someone verify these two lemmas? I am not completely well versed in number theory just yet. I believe these are very easily correct, but I do not know a formal proof.

3. Originally Posted by Media_Man
Let $\displaystyle a,b,c$ be nonzero integers
Lemma 1: If $\displaystyle (a,b)=1$, then $\displaystyle (a,a+b)=1$
Lemma 2: if $\displaystyle (a,b)=1$ and $\displaystyle (a,c)=1$, then $\displaystyle (a,bc)=1$

Can someone verify these two lemmas?
Yes, both lemmas are correct.

For Lemma 1, just note that we have $\displaystyle (x,y)=(x,y-x)$ ( in fact, applying this repeatedly you can prove that given $\displaystyle y>x>0$ we have $\displaystyle (x,y)=(x,y \bmod.x)$ )

Since $\displaystyle (x,y)$ divides x and y, it divides $\displaystyle y-x$ and so it divides $\displaystyle (x,y-x)$, thus $\displaystyle (x,y-x)\geq{(x,y)}$. $\displaystyle (x,y-x)$ divides $\displaystyle x$ and $\displaystyle y-x$, thus it divides $\displaystyle y$ also, and so it divides $\displaystyle (x,y)$ and thus $\displaystyle (x,y)\geq{(x,y-x)}$

For Lemma 2. Suppose $\displaystyle (a, bc)>1$ then there's a prime $\displaystyle p|(a,bc)$ thus $\displaystyle p|a$ and $\displaystyle p|(bc)$ and then by Euclid's Lemma $\displaystyle p|b$ or $\displaystyle p|c$ which in any case contradicts the fact that $\displaystyle (a,b)=(a,c)=1$