- If then divides any linear combination (with natural coefficients) of them, so we do not generate the numbers which are not multiples of M and so there are infinitely many numbers left out.
- If , read here
For two postage stamp values, one of *n* cents and one of *m* cents
the following Diophantine equation
mx + ny = T
gives the total value of postage or T, where x and y represent the number of each denomination of stamps
and are therefore integers. Clearly, you could get many values for T.
But there are also many values of T that you could NOT get.
I have two questions regarding this situation:
1) Under what conditions will stamp amounts *m* and *n* generate all but a finite number of
postage stamp amounts?
2) Under the conditions of question one (the stamps generate all but a finite number of amounts)
what is a *formula* for the largest postage value that CANNOT be generated?
Any help??