I forgot how to do the Chinese Remainder Theorem which applied for this question: Calculate 45^35 modulo 13 given that y === 3 mod 13 and y === 4 mod 45 Thanks
Follow Math Help Forum on Facebook and Google+
Originally Posted by knguyen2005 y === 3 mod 13 and y === 4 mod 45 This is equivalent to, $\displaystyle y\equiv 3 + 7\cdot 13(\bmod 13)$ and $\displaystyle y\equiv 4 + 2\cdot 45(\bmod 45)$. Therefore, $\displaystyle y\equiv 94(\bmod 13)$ and $\displaystyle y\equiv 94(\bmod 45)$. Thus, $\displaystyle y\equiv 94(\bmod 585)$.
View Tag Cloud